libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

NAME
libcurl-tutorial — libcurl programming tutorial

Objective
This document attempts to describe the general principles and some basic approaches to consider when pro-
gramming with libcurl. The text will focus mainly on the C intexé but might apply fairly well on other
interfaces as well as thesually follow the C one pretty closely.

This document will refer to 'the user’ as the person writing the source code that uses libcurlodldat w
probably be you or someone in your position. What will be generally referred tteegsrogram’ will be

the collected source code that you write that is using libcurl for transfers. The program is outside libcurl
and libcurl is outside of the program.

To get more details on all options and functions described herein, please refer to theinveespechages.

Building
There are mandifferent ways to build C programs. This chapter will assume a UNIX-style build process.
If you use a different build system, you can still read this to get general information that may apply to your
environment as well.

Compiling the Program
Your compiler needs to kmowhere the libcurl headers are located. Therefore you must set your
compilers include path to point to the directory where you installed them. The ’curl-config'[3]
tool can be used to get this information:

$ aurl-config --cflags

Linking the Program with libcurl
When having compiled the program, you need to link your object files to create a sigle e
cutable. For that to succeed, you need to link with libcurl and possibly also with other libraries that
libcurl itself depends on. Lithe OpenSSL libraries, bute some standard OS libraries may be
needed on the command line figure out which flags to use, onceaagthe 'curl-config’ tool
comes to the rescue:

$ curl-config --libs

SSL or Not
libcurl can be built and customized in nyaways. One of the things thaanes from diferent
libraries and builds is the support for SSL-based transfeesHIKPS and FTPS. If a supported
SSL library was detected properly at build-time, libcurl will hétbwith SSL support. @ figure
out if an installed libcurl has been built with SSL support enabled, use 'curl-conéidhikk

$ curl-config --feature

And if SSL is supported, thesfaword 'SSL will be written to stdout, possibly together with avfe
other features that could be either on dooffor different libcurls.

See also the "Features libcurl Provides" further down.

autoconf macro
When you write your configure script to detect libcurl and setup variables accoydirgiffer a
prewritten macro that probably doegeeything you need in this area. See docs/libcurl/libcurl.m4
file - it includes docs on hoto use it.

libcurl 4 Mar 2009 1

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

Portable Code in a Portable World

The people behind libcurl ki@ put a considerable fefrt to male libcurl work on a large amount of thfent
operating systems and environments.

You program libcurl the sameay on all platforms that libcurl runs on. There are only vemyrfénor con-
siderations that dir. If you just mak aure to write your code portable enough, you may very well create
yourself a very portable program. libcurl shoutdstop you from that.

Global Preparation

The program must initialize some of the libcurl functionality globdlhat means it should be doneaetly
once, no matter o mary times you intend to use the libra®nce for your progrars’ entire life time.
This is done using

curl_global_init()

and it takes one parameter which is a bit pattern that tells libcurl what to initialize. Using
CURL_GLOBAL_ALL will make it initialize all knavn internal sub modules, and might be a goocwulef
option. The current twhits that are specified are:

CURL_GLOBAL_WIN32
which only does anything on Mdows machines. When used on andbws machine,
it' Il make libcurl initialize the win32 socket stuff. Without \iag that initialized prop-
erly, your program cannot use sockets properu should only do this once for each
application, so if your program already does this or of another library in use does it, you
should not tell libcurl to do this as well.

CURL_GLOBAL_SSL
which only does arthing on libcurls compiled and built SSL-enabled. On these systems,
this will make libcurl initialize the SSL library properly for this application. This only
needs to be done once for each application so if your program or another library already
does this, this bit should not be needed.

libcurl has a default protection mechanism that detectglif global_init(3) hasnt been called by the time
curl_easy perform(3) is called and if that is the case, libcurl runs the function itself with a guessed bit pat-
tern. Please note that depending solely on this is not considered nice nor very good.

When the program no longer uses libcurl, it should @all_global _cleanup(3), which is the opposite of
the init call. It will then do the xersed operations to cleanup the resourcesuheglobal init(3) call ini-
tialized.

Repeated calls tourl_global _init(3) andcurl_global cleanup(3) should be @oided. Thg should only be
called once each.

Features libcurl Provides

It is considered best-practice to determine libcurl features at run-time rather than at build-time (if possible
of course). By callingurl_version_info(3) and checking out the details of the returned struct, your program
can figure out exactly what the currently running libcurl supports.

Handle the Easy libcurl

libcurl

libcurl first introduced the so called easy inked. All operations in the easy interface are prefixed with
‘curl_easy'.

Recent libcurl versions also offer the multi interface. More about that interface, what it is targeted for and
how to use it is detailed in a separate chapter further down. You still need to understand the easg interf

4 Mar 2009 2

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

libcurl

first, so please continue reading for better understanding.

To use the easy interface, you must first create yourself an easy handliee&tl one handle for each easy
session you want to perform. Basicapu should use one handle foregy thread you plan to use for
transferring. You must wer share the same handle in multiple threads.

Get an easy handle with

easyhandle = curl_easy_init();

It returns an easy handle. Using that you proceed to tiestep: setting up your preferred actions. A han-
dle is just a logic entity for the upcoming transfer or series of transfers.

You set properties and options for this handle usind_easy setopt(3). They control hav the subsequent
transfer or transfers will be made. Options remain set in the handle untibset@agomething diérent.
Alas, multiple requests using the same handle will use the same options.

Many of the options you set in libcurl are "strings", pointers to data terminated with a zero byte. When you
set strings witleurl_easy setopt(3), libcurl makes its own cgpso that thg don’t need to be kept around in
your application after being set[4].

One of the most basic properties to set in the handle is the URL. You set your preferred URL to transfer
with CURLOPT_URL in a manner similar to:

curl_easy_setopt(handle, CURLOPT_URL, "http://domain.com/");

Let's sssume for a while that you want to reeetata as the URL identifies a remote resource you want to
get here. Since you write a sort of application that needs this tranasesume that you would kkto et

the data passed to you directly instead of simply getting it passed to stdout. So, you write your own func-
tion that matches this prototype:

size_t write_data(void *buffesze _t size, size_t nmemb, void *userp);

You tell libcurl to pass all data to this function by issuing a function similar to this:
curl_easy_setopt(easyhandle, CURLOPT_WRITEFUNCTION, write_data);

You can control what data your callback function gets in the fourth argument by setting another property:

curl_easy_setopt(easyhandle, CURLOPT_ WRIAEMD, &internal_struct);

Using that propertyyou can easily pass local data between your application and the function that gets
invoked by libcurl. libcurl itself wont touch the data you pass WituRLOPT_WRITEDATA.

libcurl offers its own default internal callback that will ¢éakare of the data if you danset the callback
with CURLOPT_WRITEFUNCTION. It will then simply output the recesd data to stdout. You can &
the default callback write the data to aeliént file handle by passing a 'FILE *' to a file opened for writ-
ing with theCURLOPT_WRITEDATA option.

Now, we reed to tak a sep back and ha a aep breath. Herg'me of those rare platform-dependent nit-
picks. Did you spot it? On some platforms[2], libcudnit be @le to operate on files opened by the pro-
gram. Thus, if you use the default callback and pass in an open fil€UWRhOPT WRITEDATA, it will
crash. You should thereforgad this to mak your program run fine virtuallyverywhere.

4 Mar 2009 3

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

(CURLOPT_WRITEDATA was formerly known asCURLOPT_FILE. Both names still wrk and do the
same thing).

If you're using libcurl as a win32 DLL, you MUST use B&RLOPT_WRITEFUNCTION if you setCUR-
LOPT_WRITEDATA - or you will experience crashes.

There are of course mamore options you can set, and we'll get back tovadéthem laterLet’s instead
continue to the actual transfer:

success = curl_easy_ perform(easyhandle);

curl_easy perform(3) will connect to the remote site, do the necessary commands anderbeeiransfer
Wheneer it receves data, it calls the callback function we previously set. The function may get one byte at
a time, or it may get mankilobytes at once. libcurl defers as much as possible as often as possibla:. Y
callback function should return the number of bytes it "took care of". If that is notdabesame amount of
bytes that was passed to it, libcurl will abort the operation and return with an error code.

When the transfer is complete, the function returns a return code that informs you if it succeeded in its mis-
sion or not. If a return code igrénough for you, you can use the CURLOPT_EMEBUFFER to point
libcurl to a buffer of yours where it'll store a human readable error message as well.

If you then want to transfer another file, the handle is ready to be usied ldind you, it is gen preferred
that you re-use arxisting handle if you intend to makanother transfedibcurl will then attempt to re-use
the previous connection.

For some protocols, downloading a file candlve a @mplicated process of logging in, setting the transfer
mode, changing the current directory and finally transferring the file data. libaesldake of all that com-
plication for you. Gren smply the URL to a file, libcurl will tak care of all the details needed to get the
file moved from one machine to another.

Multi-threading Issues

libcurl

The first basic rule is that you mustéver simultaneously share a libcurl handle (be it easy or multi or
whatever) between multiple threads. Only use one handle in one threag titna@n You can pass the han-
dles around among threads, but you musemnease a single handle from more than one threadyagjisen
time.

libcurl is completely thread safe, except footissues: signals and SSL/TLS handlers. Signals are used for
timing out name resolves (during DNS lookup) - when built without c-ares support and not on Windows.

If you are accessing HTTPS or FTPS URLs in a multi-threaded mammeare then of course using the
underlying SSL library multi-threaded and those libs migkeHaeir own requirements on this issue. Basi-
cally, you need to provide one ordviunctions to allw it to function properlyFor all details, see this:
OpenSSL

http://www.openssl.org/docs/crypto/threads.html#DESCRIPTION

GnuTLS

http://www.gnu.org/software/gnutls/manual/html_node/Multi_002dthreaded-applications.html

NSS

is claimed to be thread-safe already without anything required.

4 Mar 2009 4

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

PolarSSL

Required actions unknown.

yassl

Required actions unknown.

axTLS

Required actions unknown.

Secure Transport

The engine is fully thread-safe, and no additional steps are required.

When using multiple threads you should set the CURLOPT_NOAILGition to 1 for all handles. Evy-

thing will or might work fine except that timeouts are not honored during the DNS lookup - which you can
work around by building libcurl with c-ares support. c-ares is a library that provides asynchronous name
resolhes. On some platforms, libcurl simply will not function properly multi-threaded unless this option is

set.

Also, note that CURLOPT_DNS_USE_GLOBAL_CACHE is not thread-safe.

When It Doesn’t Work

There will alvays be times when the transfer fails for some reason. You mightsatithe wrong libcurl
option or misunderstood what the libcurl option actually does, or the remote server might return non-stan-
dard replies that confuse the library which then confuses your program.

Theres e golden rule when these things occur: set the CURLOPT_VERBOSE option to 1. It'll cause the
library to sp& out the entire protocol details it sends, some internal info and someetepeitocol data

as well (especially when using FTP). If yamiusing HTTPadding the headers in the regs output to

study is also a cler way to get a better understandingythe server belvas the way it does. Include
headers in the normal body output with CURLOPT_HEADER set 1.

Of course, there are bugs lefte\ieed to knav about them to be able to fix them, so we're quite dependent
on your bug reports! When you do report suspecteags lin libcurl, please include as myatfetails as you
possibly can: a protocol dump that CURLOPT_VERBOSE produces, libeaisjon, as much as possible
of your code that uses libcurl, operating system name and version, compiler name and version etc.

If CURLOPT_VERBOSE is not enough, you increase thel lef debug data your application regei by
using the CURLOPT_DEBUGFUNCTION.

Getting some in-depth knowledge about the protoceighied is ne&er wrong, and if you're trying to do
funny things, you might very well understand libcurl andvho use it better if you study the appropriate
RFC documents at least briefly.

Upload Data to a Remote Site

libcurl

libcurl tries to keep a protocol independent approach to most transfers, thus uploading to a remote FTP site
is very similar to uploading data to a HTTP server with a PUT request.

Of course, first you either create an easy handle or you re-use one existing one. Then you set the URL to
operate on just li before. This is the remote URL, that weanwill upload.

4 Mar 2009 5

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

Since we write an application, we most likely want libcurl to get the upload data by asking us dor it. T
male it do hat, we set the read callback and the custom pointer libcurl will pass to our read callback. The
read callback should fia a pototype similar to:

size_t function(char *bufptsize_t size, size_t nitems, void *userp);

Where bufptr is the pointer to affer we fill in with data to upload and size*nitems is the size of tiffieb

and therefore also the maximum amount of data we can return to libcurl in this call. The 'userp’ pointer is
the custom pointer we set to point to a struct of ours to pasgepdata between the application and the
callback.

curl_easy_setopt(easyhandle, CURLOPT_READFUNCTION, read_function);
curl_easy_setopt(easyhandle, CURLOPT_READMD, &filedata);

Tell libcurl that we want to upload:

curl_easy_setopt(easyhandle, CURLOPT_UPLOAD, 1L);

A few potocols won't behave properly when uploads are done withouty gorior knowledge of the
expected file size. So, set the upload file size using the CURLOPT _INFILESIZE_LARGE for ath kno
file sizes lile this[1]:

[* in this example, file_size must be an curl_off_t variable */
curl_easy_setopt(easyhandle, CURLOPT _INFILESIZE_LARGE, file_size);

When you callcurl_easy perform(3) this time, itll perform all the necessary operations and when it has
invoked the upload it'll call your supplied callback to get the data to upload. The program should return as
much data as possible imeey invoke, as hat is likely to mak the upload perform as fast as possible. The
callback should return the number of bytes it wrote in thféeb Returning 0 will signal the end of the
upload.

Passwords
Many protocols use orven require that user name and passWare provided to be able to download or
upload the data of your choice. libcurl offergesal ways to specify them.

Most protocols support that you specify the name and password in the URL itself. libcurl will detect this
and use them accordinglihis is written lile this:

protocol://user:password@example.com/path/

If you need ay odd letters in your user name or password, you should enter them URL encoded, as %XX
where XX is a two-digit hexadecimal number.

libcurl also provides options to set various passwords. The user name and passwosth @sraleaided in

the URL can instead get set with the CURLOPT_USERPWD option. The argument passed to libcurl
should be a char * to a string in the format "user:password". In a mana#ridik

curl_easy_setopt(easyhandle, CURLOPT_USERPWD, "myname:thesecret");

Another case where name and password might be needed at times, is for those users who need to authenti-

cate themselves to a proxy yhese. libcurl ofers another option for this, the CURLOPT ®RYUSER-
PWD. It is used quite similar to the CURLOPT_USERPWD optiom thks:

libcurl 4 Mar 2009 6

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

curl_easy_setopt(easyhandle, CURLOPTORRUSERPWD, "myname:thesecret");

Theres a bng time UNIX "standard" ay of storing ftp user names and passwords, namely in the
$HOME!/.netrc file. The file should be madevpre so that only the user may read it (see also the "Security
Considerations" chapter), as it might contain the passin plain text. libcurl has the ability to use this file

to figure out what set of user name and password to use for a particular host. As an extension to the normal
functionality, libcurl also supports this file for non-FTP protocols such as HT3 Pake aurl use this file,

use the CURLOPT_NETRC option:

curl_easy_setopt(easyhandle, CURLOPT_NETRC, 1L);

And a very basic example ofWasuch a .netrc file may look like:

machine myhost.mydomain.com

login userlogin

password secretword

All these examples ka been cases where the password has been optional, or at least you seutcdlda
and hae libcurl attempt to do its job without it. There are times when the madsisnt optional, like
when you're using an SSL pete key for secure transfers.

To pass the known prate key password to libcurl:

curl_easy_setopt(easyhandle, CURLOPT_ KEYPASSWBypgassword");

HTTP Authentication

libcurl

The previous chapter showedwin st user name and passw for getting URLSs that require authentica-
tion. When using the HTTP protocol, there are yngifferent ways a client can provide those credentials to
the server and you can control which way libcurl will (attempt to) use them. TaeltddT TP authentica-
tion method is called 'Basic’, which is sending the name and padsw cleattext in the HTTP request,
base64-encoded. This is insecure.

At the time of this writing, libcurl can be built to use: Basic, Digest, NTLM, Negotiate, GSS-Negotiate and
SPNEGO. You can tell libcurl which one to use with CURLOPT_HAUPH as in:

curl_easy_setopt(easyhandle, CURLOPT_HAUPH, CURLAUTH_DIGEST);

And when you send authentication to a prgyou can also set authentication type the samehut instead
with CURLOPT_PRXYAUTH:

curl_easy_setopt(easyhandle, CURLOPTORRAUTH, CURLAUTH_NTLM);
Both these options alloyou to set multiple types (by ORing them together), toariicurl pick the most
secure one out of the types the sefproxy claims to support. This method doewée@r add a round-trip

since libcurl must first ask the server what it supports:

curl_easy_setopt(easyhandle, CURLOPT_HAUPH,
CURLAUTH_DIGEST|CURLAUTH_BASIC);

For convenience, you can use the 'CURLAUTH_ANY’ define (instead of a list with specific types) which
allows libcurl to use whater method it wants.

When asking for multiple types, libcurl will pick theadable one it considers "best" in its own internal
order of preference.

4 Mar 2009 7

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

HTTP POSTing

libcurl

We ¢et mary questions rgarding hawv to issue HTTP POSTs with libcurl the propesiywThis chapter will
thus include examples using both different versions of HTTP POST that libcurl supports.

The first version is the simple POSfie most commonersion, that most HTML pages using the <form>
tag uses. & povide a pointer to the data and tell libcurl to post it all to the remote site:

char *data="name=daniel&project=curl";
curl_easy_setopt(easyhandle, CURLOPT_POSTFIELDS, data);
curl_easy_setopt(easyhandle, CURLOPT_URL, "http://posthere.com/");

curl_easy_ perform(easyhandle); /* posg! */

Simple enough, huh? Since you set the POST options with the CURLOPT_POSTFIELDS, this automati-
cally switches the handle to use POST in the upcoming request.

Ok, so what if you want to post binary data that also requires you to set the Content-Type: header of the
post? Well, binary posts prent libcurl from being able to do strlen() on the data to figure out the size, so
therefore we must tell libcurl the size of the post data. Setting headers in libcurl requests are done in a
generic wayby huilding a list of our own headers and then passing that list to libcurl.

struct curl_slist *headers=NULL;
headers = curl_slist_append(headers, "Content-Type: text/xml");

[* post binary data */
curl_easy_setopt(easyhandle, CURLOPT_POSTFIELDS, binaryptr);

[* set the size of the postfields data */
curl_easy_setopt(easyhandle, CURLOPT_POSTFIELDSIZE, 23L);

[* pass our list of custom made headers */
curl_easy_setopt(easyhandle, CURLOPT_HTTPHEADER, headers);

curl_easy_perform(easyhandle); /* poseg! */
curl_slist_free_all(headers); /* free the header list */

While the simple examples al® cwve the majority of all cases where HTTP POST operations are
required, thg don't do multi-part formposts. Multi-part formposts were introduced as a better way to post
(possibly lage) binary data and were first documented in the RFC1867 (updated in RFC2388g The
called multi-part because tiee built by a chain of parts, each part being a single unit of data. Each part
has its own name and contents. You can in fact create and post a multi-part formpost wghlainditveur!
POST support described afep but that would require that you build a formpost yourself andigeoto
libcurl. To make that easierlibcurl provides curl_formadd(3). Using this function, you add parts to the
form. When you're done adding parts, you post the whole form.

The following example sets twample text parts with plain textual contents, and then a file with binary
contents and uploads the whole thing.

struct curl_httppost *post=NULL;

struct curl_httppost *last=NULL;

curl_formadd(&post, &last,
CURLFORM_COPYNAME, "name",
CURLFORM_COPYCONTENTS, "daniel", CURLFORM_END);

4 Mar 2009 8

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

curl_formadd(&post, &last,
CURLFORM_COPYNAME, "project",
CURLFORM_COPYCONTENTS, "curl", CURLFORM_END);
curl_formadd(&post, &last,
CURLFORM_COPYNAME, "logotype-image",
CURLFORM_FILECONTENT"curl.png", CURLFORM_END);

* Set the form info */
curl_easy_setopt(easyhandle, CURLOPT_HTTPPRQ&SL);

curl_easy_perform(easyhandle); /* poseg! */

[* free the post data again */
curl_formfree(post);

Multipart formposts are chains of parts using MIME-style separators and headers. It means that each one of
these separate parts get & feeaders set that describe the individual content-type, sizecetnalble your
application to handicraft this formpostea more, libcurl allows you to supply your own set of custom
headers to such an individual form part. You can of course supply headers toygmrtseas you like, ut

this little example will sha how you set headers to one specific part when you add that to the post handle:

struct curl_slist *headers=NULL;
headers = curl_slist_append(headers, "Content-Type: text/xml");

curl_formadd(&post, &last,
CURLFORM_COPYNAME, "logotype-image",
CURLFORM_FILECONTENT"curl.xml",
CURLFORM_CONTENTHEADER, headers,
CURLFORM_END);

curl_easy_perform(easyhandle); /* poseg! */

curl_formfree(post); /* free post */
curl_slist_free_all(headers); /* free custom header list */

Since all options on an easyhandle are "gtickhey remain the same until changedee if you do call
curl_easy perform(3), you may need to tell curl to go back to a plain GET request if you intend to do one
as your next request.oM force an easyhandle to go back to GET by using the CURLOPT_HTTPGET

option:
curl_easy_setopt(easyhandle, CURLOPT_HTTPGEY;

Just setting CURLOPT_POSTFIELDS to "™ or NULL will *not* stop libcurl from doing a PASWiIll
just male it POST without ag data to send!

Showing Progress

libcurl

For historical and traditional reasons, libcurl hasudtbn progress meter that can be switched on and then
makes it present a progress meter in your terminal.

Switch on the progress meter, loddly enough, setting CURLOPT_NOPROGRESS to zero. This option is
set to 1 by default.

For most applications heever, the built-in progress meter is useless and what instead is interesting is the
ability to specify a progress callback. The function pointer you pass to libcurl will then be called on

4 Mar 2009 9

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

irregular intervals with information about the current transfer.

Set the progress callback by using CURLOPTOBIRESSFUNCTION. And pass a pointer to a function
that matches this prototype:

int progress_ callback(void *clientp,
double dltotal,
double dinev,
double ultotal,
double ulnow);

If any of the input arguments is unknown, a 0 will be passed. The first argument, the ’clientp’ is the pointer
you pass to libcurl with CURLOPT_PROGRESAI. libcurl wont touch it.

libcurl with C++
Theres hasically only one thing to keep in mind when using C++ instead of C when interfacing libcurl:

The callbacks CANNO be ron-static class member functions
Example C++ code:

class AClass {
static size_t write_data(void *psize_t size, size_t nmemb,
void *ourpointer)
{

[* do what you want with the data */

}
}

Proxies
What "proxy" means according to Merriam-Webster: "a person authorized to act for anotrasbb'the
ageng, function, or office of a deputy who acts as a substitute for another".

Proxies are exceedingly common these days. Companies often only offer Internet accessyteesmplo
through their proxies. Network clients or user-agents ask the proxy for documents, the proxy does the
actual request and then it returns them.

libcurl supports SOCKS and HTTP proxies. WhenwerglURL is wanted, libcurl will ask the proxy for it
instead of trying to connect to the actual host identified in the URL.

If you're using a SOCKS proxyou may find that libcurl doesjuite support all operations through it.

For HTTP proxies: the fact that the proxy is a HTTP proxy puts certain restrictions on what can actually
happen. A requested URL that might not be a HTTP URL will be still be passed to the HTTP proxy to
deliver back to libcurl. This happens transparenstyd an application may not need to knd say "may",
because at times it is very important to understand that all operatiena BITTP proxy use the HTTP

protocol. For example, you carihvdke your own custom FTP commands oee proper FTP directory
listings.

Proxy Options

To tell libcurl to use a proxy at agn port number:

libcurl 4 Mar 2009 10

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

libcurl

curl_easy_setopt(easyhandle, CURLOPTORR, "proxy-host.com:8080");

Some proxies require user authentication beforevailpa request, and you pass that information
similar to this:

curl_easy_setopt(easyhandle, CURLOPTORRUSERPWD, "user:password");

If you want to, you can specify the host name only in the CURLOPDX™Roption, and set the
port number separately with CURLOPT GRYPORT.

Tell libcurl what kind of proxy it is with CURLOPT_RBXYTYPE (if not, it will default to
assume a HTTP proxy):

curl_easy_setopt(easyhandle, CURLOPTORRTYPE, CURLPROXY_SOCKS4);

Environment Variables

libcurl automatically checks and uses a set of environment variablesvovkmat proxies to use

for certain protocols. The names of the variables are following an ancient de facto standard and are
built up as "[protocol]_proxy" (note the Wer casing). Which makes the variable ’http_proxy’
checled for a name of a proxy to use when the input URL is HFelowing the same rule, the
variable named 'ftp_proxy’ is cheekl for FTP URLs. Again, the proxies aravays HTTP prox-

ies, the different names of the variables simply allows different HTTP proxies to be used.

The proxy environment variable contents should be in the format "[protocol://][user:pass-
word@]machine[:port]". Where the protocol:// part is simply ignored if present (so http://proxy
and bluerk://proxy will do the same) and the optional port number specifies on which port the
proxy operates on the host. If not specified, the internaluttgfort number will be used and that

is most likely *not* the one you would kkit to be.

There are tw gecial environment variables. 'all_proxy’ is what sets proxy fgr dRL in case

the protocol specificariable vasnt set, and 'no_proxy’ defines a list of hosts that should not use
a proxy even though a variable may say so. If 'no_proxy’ is a plain asterisk ("*") it matches all
hosts.

To explicitly disable libcurls checking for and using the proxy\@ronment variables, set the
proxy name to " - an empty string - with CURLOPT (PRY.

SSL and Proxies

SSL is for secure point-to-point connections. Thiglwes strong encryption and similar things,
which efectively makes it impossible for a proxy to operate as a "man in between" which the
proxy’'s task is, as previously discussed. Instead, the only wayv® $&l work over a HTTP
proxy is to ask the proxy to tunnel trougresthing without being able to check or fiddle with the
traffic.

Opening an SSL connectiorves a HTTP proxy is therefor a matter of asking the proxy for a
straight connection to the target host on a specified port. This is made with the HTTP request
CONNECT ("please mr proxyconnect me to that remote host").

Because of the nature of this operation, where the proxy has no idea what kind of data that is
passed in and out through this tunnel, this breaks some of the wesgivientages that come from

using a proxysuch as cachingMany organizations preent this kind of tunneling to other desti-
nation port numbers than 443 (which is the default HTTPS port number).

4 Mar 2009 11

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

Tunneling Through Proxy
As explained abee, tunneling is required for SSL toask and often een restricted to the opera-
tion intended for SSL; HTTPS.

This is howeer not the only time proxy-tunneling might offer benefits to you or your application.

As tunneling opens a direct connection from your application to the remote machine, it suddenly
also re-introduces the ability to do non-HTTP operatiores @ HTTP proxy You can in fact use
things such as FTP upload or FTP custom commands this way.

Again, this is often prented by the administrators of proxies and is rarely allowed.

Tell libcurl to use proxy tunneling lik this:

curl_easy_setopt(easyhandle, CURLOPT_ HTTORRTUNNEL, 1L);

In fact, there might\ven be tmes when you ant to do plain HTTP operations using a tunned lik

this, as it then enables you to operate on the remotersestead of asking the proxy to do so.
libcurl will not stand in the way for such invative actions either!

Proxy Auto-Config

Netscape first came up with this. It is basically a web page (usually using a .pac extension) with a
Javascript that whenyacuted by the breser with the requested URL as input, returns information

to the browser on o to connect to the URL. The returned information might be "DIRECT"
(which means no proxy should be used), XY host:port" (to tell the browser where the proxy

for this particular URL is) or "SOCKS host:port" (to direct the browser to a SOCKS proxy).

libcurl has no means to interpret ataleiate Jaascript and thus it doedrsupport this. If you get
yourself in a position where you face this nastyemtion, the following advice h& been men-
tioned and used in the past:

- Depending on the Vascript complaity, write up a script that translates it to another language
and &ecute that.

- Read the Jascript code and rewrite the same logic in another language.

- Implement a Jascript interpreter; people Y successfully used the Mozilla\kscript engine
in the past.

- Ask your admins to stop this, for a static proxy setup or similar.

Peasistence Is The Way to Happiness

libcurl

Re-cycling the same easy handleesal times when doing multiple requests is the way to go.

After each singleurl_easy perform(3) operation, libcurl will keep the connectionvaiand open. A subse-

guent request using the same easy handle to the same host might just be able to use the already open con-
nection! This reduces network impact a lot.

Even if the connection is dropped, all connectionsliing SSL to the same host again, will benefit from
libcurl's ession ID cache that drastically reduces re-connection time.

FTP connections that aret alve savea lot of time, as the command- response round-trips are skipped,
and also you don'isk getting blocked without permission to login agaire ldn nany FTP servers only

4 Mar 2009 12

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

allowing N persons to be logged in at the same time.
libcurl caches DNS name resolving results, to elakkups of a previously looked up name a lot faster.
Other interesting details that impeperformance for subsequent requests may also be added in the future.

Each easy handle will attempt to keep the lastdennections alie for a while in case tlyeare to be used
again. You can set the size of this "cache" with the CURLOPT_MAXCONNECTS option. Default is 5.
There is very seldom grpoint in changing this alue, and if you think of changing this it is often just a
matter of thinking again.

To force your upcoming request to not use an already existing connection (ivemildese one first if

there happens to be onevalio the same host yo about to operate on), you can do that by setting CUR-
LOPT_FRESH_CONNECT to 1. In a similar spirit, you can also forbid the upcoming request to be "lying"
around and possibly get re-used after the request by setting CURLOPT_FORBID_REUSE to 1.

HTTP Headers Used by libcurl
When you use libcurl to do HTTP requestd| ftass along a series of headers automatickliypight be
good for you to kne and understand these. You can replace or vembem by using the CUR-
LOPT_HTTPHEADER option.

Host This header is required by HTTP 1.1 amgremary 1.0 servers and should be the name of the
server we want to talk to. This includes the port number if anything but default.

Accept "*/*".

Expect When doing POST requests, libcurl sets this header to "100-continue" to ask #refaelan
"OK" message before it proceeds with sending the data part of the post. If the POSTed data
amount is deemed "small", libcurl will not use this header.

Customizing Operations
There is an ongoing delopment today where more and more protocols are built upon HTTP for transport.
This has obious benefits as HTTP is a tested and reliable protocol that is widely deployed arddtas e
lent proxy-support.

When you use one of these protocols, areh evhen doing other kinds of programming you may need to
change the traditional HTTP (or FTP..9gr mannersYou may need to change words, headers aious
data.

libcurl is your friend here too.

CUSTOMREQUEST
If just changing the actual HTTP requestakord is what you want, lik when GET HEAD or
POST is not good enough for you, CURLOPT_CIOBIREQUEST is there for you. It isery
simple to use:

curl_easy_setopt(easyhandle, CURLOPT_CUSTOMREQUHE8Y OWNREQUEST");
When using the custom request, you change the reqeyedrkl of the actual request you are-per

forming. Thus, by default you malka GET request bt you can also ma&ka ROST operation (as
described before) and then replace the PGSilvérd if you want to. You're the boss.

libcurl 4 Mar 2009 13

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

Modify Headers
HTTP-like protocols pass a series of headers to the server when doing the request, and you're free
to pass apamount of extra headers that you think fit. Adding headers is this easy:
struct curl_slist *headers=NULL; /* init to NULL is important */

headers = curl_slist_append(headers, "Hey-server-heyateoyou?");
headers = curl_slist_append(headers, "X-silly-content: yes");

[* pass our list of custom made headers */
curl_easy_setopt(easyhandle, CURLOPT_HTTPHEADER, headers);

curl_easy_perform(easyhandle); /* transfer http */
curl_slist_free_all(headers); /* free the header list */

... and if you think some of the internally generated headers, such as Accept: or Hosordon'’
tain the data you want them to contain, you can replace them by simply setting them too:

headers = curl_slist_append(headers, "Accept: Agent-007");
headers = curl_slist_append(headers, "Host: munged.host.line");

Delete Headers
If you replace an existing header with one with no contents, you wileqmréhe header from
being sent. For instance, if youant to completely prent the "Accept:" header from being sent,
you can disable it with code similar to this:

headers = curl_slist_append(headers, "Accept:");

Both replacing and canceling internal headers should be done with careful consideration and you
should be ware that you may violate the HTTP protocol when doing so.

Enforcing chunked transfer-encoding
By making sure a request uses the custom headansferEncoding: chunked" when doing a
non-GET HTTP operation, libcurl will switchver to "chunked" upload, een though the size of

the data to upload might be kmo. By default, libcurl usually switches/& to chunked upload
automatically if the upload data size is unknown.

HTTP Version
All HTTP requests includes the version number to tell the server which version we support. libcurl
speaks HTTP 1.1 by default. Sonery old servers dotlike getting 1.1-requests and when deal-
ing with stubborn old things lékthat, you can tell libcurl to use 1.0 instead by doing something
like this:

curl_easy_setopt(easyhandle, CURLOPT_HTTP_VERSION, CURL_HTTP_VERSION_1 0);

FTP Custom Commands

Not all protocols are HTTP-like, and thus the abaay not help you when youamt to make, for
example, your FTP transfers to bebalfferently.

libcurl 4 Mar 2009 14

libcurl-tutorial(3)

libcurl programming libcurl-tutorial(3)

Sending custom commands to a FTP eemgeans that you need to send the commands exactly as
the FTP server expects them (RFC959 is a good guide here), and you can only use commands that
work on the control-connection alone. All kinds of commands that require data interchange and
thus need a data-connection must be left to lilkwl/n judgement. Also beware that libcurl

will do its very best to change directory to the target directory before dojnigaasfer so if you

change directory (with CWD or similar) you might confuse libcurl and then it might not attempt to
transfer the file in the correct remote directory.

A little example that deletes asgn file before an operation:
headers = curl_slist_append(headers, "DELE file-to-vef)io

[* pass the list of custom commands to the handle */
curl_easy_setopt(easyhandle, CURLOPT_QUOTE, headers);

curl_easy_perform(easyhandle); /* transfer ftp data! */
curl_slist_free_all(headers); /* free the header list */

If you would instead ant this operation (or chain of operations) to happen _after the data trans-
fer took place the option tocurl _easy setopt(3) would instead be called CUR-
LOPT_POSTQUOTE and used the exact same way.

The custom FTP command will be issued to the server in the same oxdaretelded to the list,
and if a command gets an error code returned back from ther, sesurore commands will be
issued and libcurl will bail out with an error code (CURLEJ@QIE_ERFROR). Note that if you
use CURLOPT_QOTE to send commands before a trangfiertransfer will actually ta& gace

when a quote command has failed.

If you set the CURLOPT_HEADER to 1, you will tell libcurl to get information about thgetar
file and output "headers" about it. The headers will be in "HTTP-style", lookiaghid¢g do in

HTTP.

The option to enable headers or to run custom FTP commands may be useful to combine with
CURLOPT_NOBOL. If this option is set, no actual file content transfer will be performed.

FTP Custom CUSTOMREQUEST

If you do want to list the contents of a FTP directory using yeur defined FTP command,
CURLOPT_CUSTOMRE@QEST will do just that. "NLST" is the default one for listing directo-
ries but you're free to pass in your idea of a good altexmati

Cookies Without Chocolate Chips

libcurl

In the HTTP sense, a cookie is a name with an associated value.eA samds the name and value to the
client, and expects it to get sent back werg subsequent request to the server that matches the particular
conditions set. The conditions include that the domain name and path match and that the codkie hasn’

become too old.

In real-world cases, seks send ne cookies to replace existing ones to update them. Server use cookies to
"track" users and to keep "sessions".

Cookies are sent from server to clients with the header Set-Cookie: gireé gent from clients to seaxs
with the Cookie: header.

To just send whater cookie you want to a seey you can use CURLOPT_COOKIE to set a cookie string

4 Mar 2009 15

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

like this:
curl_easy_setopt(easyhandle, CURLOPT_COOKIE, "namel=varl; name2=var2;");

In mary cases, that is not enough. You mighanito dynamically se whatever cookies the remote seaw
passes to you, and meafure those cookies are then used accordingly on later requests.

One way to do this, is towadl headers you receg in a gain file and when you maka equest, you tell
libcurl to read the préous headers to figure out which cookies to use. Set the header file to read cookies
from with CURLOPT_COOKIEFILE.

The CURLOPT_COOKIEFILE option also automatically enables the cookie parser in libcurl. Until the
cookie parser is enabled, libcurl will not parse or understand incoming cookies sndilthiist be
ignored. Hovever, when the parser is enabled the cookies will be understood and the cookies will be kept in
memory and used properly in subsequent requests when the same handle is ugeimédathis is
enough, and you may notJei savethe cookies to disk at all. Note that the file you specify to CUR-
LOPT_COOKIEFILE doest’haveto exist to enable the parseo a ©mmon way to just enable the parser
and not read ancookies is to use the name of a file youwrdwesnt exist.

If you would rather use existing cookies that weufreviously receved with your Netscape or Mozilla
browsers, you can makibcurl use that cookie file as input. The CURLOPT_COOKIEFILE is used for that
too, as libcurl will automatically find out what kind of file it is and act accordingly.

Perhaps the most advanced cookie operation libcurl offersyirsgséhe entire internal cookie state back

into a Netscape/Mozilla formatted cookie filee\&4ll that the cookie-jaWhen you set a file hame with
CURLOPT_COOKIEAR, that file name will be created and all reedicookies will be stored in it when
curl_easy cleanup(3) is called. This enables cookies to get passed on properly between multiple handles
without ary information getting lost.

FTP Peculiarities We Need

libcurl

FTP transfers use a second TCP/IP connection for the data trdhs$as usually adct you can forget and
ignore but at times this fact will come back to haunt you. libcurl offersraledifferent ways to customize
how the second connection is being made.

libcurl can either connect to the server a second time or tell the server to connect back to it. The first option
is the dedult and it is also what works best for all the people behinddie NATs or IP-masquerading
setups. libcurthen tells the server to open up avngort and wait for a second connection. This is by
default attempted with EPSV first, and if that do¢svork it tries ASV instead. (EPSV is an extension to

the original FTP spec and does not exist nor work on all FTP servers.)

You can preent libcurl from first trying the EPSV command by setting CURLOPT_FTP_USE_EPSV to
zero.

In some cases, you will prefer toveathe serer connect back to you for the second connection. This might
be when the seer is perhaps behind a fivall or something and only allows connections on a single port.
libcurl then informs the remote semvwhich IP address and port number to connect to. This is made with
the CURLOPT_FTPPORoption. If you set it to "-", libcurl will use your systesi'default IP address". If

you want to use a particular, fou can set the full IP address, a host name to ms$olan IP ddress or

evan a local network interface name that libcurl will get the IP address from.

When doing the "PORT" approach, libcurl will attempt to use theTedpR the LPR before trying POR,

as thg work with more protocols. &U can disable this behavior by setting CURLOPT_FTP_USETE®R
zero.

4 Mar 2009 16

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

Headers Equal Fun
Some protocols provide "headers", meta-data separated from the normal data. These headersalte by def
not included in the normal data streamt fou can mai them appear in the data stream by setting CUR-
LOPT_HEADER to 1.

What might be een more useful, is libcur$ aility to separate the headers from the data and thue thek
callbacks difer. You can for gample set a different pointer to pass to the ordinary write callback by setting
CURLOPT_WRITEHEADER.

Or, you can set an entirely separate function to veckhie headers, by using CURLOPT_HEADERFUNC-
TION.

The headers are passed to the callback function one by one, and you can depend on that fact. It makes it
easier for you to add custom header parsers etc.

"Headers" for FTP transfers equal all the FTP exeresponses. Thiearen't actually true headers, but in
this case we pretend there! ;-)

Post Transfer Information
[curl_easy getinfo]

Security Considerations
The libcurl project takes security seriousiyhe library is written with caution and precautions are taken to
mitigate mawg kinds of risks encountered while operating with potentially maliciousgseon the Internet.
It is a powerful libraryhoweve, which allows application writers to maltrade offs between ease of writ-
ing and exposure to potential nskperations. Ifused the right ay, you can use libcurl to transfer data
pretty safely.

Many applications are used in closed networks where users and servers can be trustedy btitersaare
used on arbitrary seevs and are fed input from potentially untrusted useddowing is a discussion about
some risks in the ways in which applications commonly use libcurl and potentiatioitig of those risks.
It is by no means comprehewsibut shows classes of attacks that robust applications should cornisider
Common Weakness Enumeration project at http://cwe.mitre.org/ is a good referenceyfaf thase and
similar types of weaknesses of which application writers shoulvae a

Command Lines
If you use a command line tool (such as curl) that uses libcurl, and weapgions to the tool on
the command line those options can very likely get read by other users of your system when the
use 'ps’ or other tools to list currently running processes.

To avoid this problem, neer feed sensitie things to programs using command line options. Write
them to a protected file and use the —K optionvtidathis.

.netrc .netrc is a pretty handy file/feature that afoyou to login quickly and automatically to frequently
visited sites. The file contains passwords in clear text and is a real security risk. In some cases,
your .netrc is also stored in a home directory that is NFS mounted or used on anotbdt netw
based file system, so the clear text password will fly through youroresvery time aryone
reads that file!

To avoid this problem, don’use .netrc files and wer store passwords in plain text anywhere.

libcurl 4 Mar 2009 17

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

Clear ext Passwords
Many of the protocols libcurl supports send name and paxsbunencrypted as clear text (HTTP
Basic authentication, FTRPELNET etc). It is very easy for anyone on your network or a owtw
nearby yours to just fire up a network analyzer tool andseaop on your passwords. Dohét
the fact that HTTP Basic uses base64 encoded passwords fool ygumayhaot look readable at
a first glance, but thevery easily "deciphered" by anyone within seconds.

To avoid this problem, use HTTP authentication methods or other protocols thatet@rioopers
see your passwd: HTTP with Digest, NTLM or GSS authentication, HTTPS, FTPS,, SEPP
and FTP-Kerberos are afexamples.

Redirects
The CURLOPT_FOLL®LOCATION option automatically follows HTTP redirects sent by a
remote serer. These redirects can refer toyakind of URL, not just HTTP A redirect to a file:
URL would cause the libcurl to read (or write) arbitrary files from the local filesystethe
application returns the data back to the user (as would happen in some kinds of CGI scripts), an
attacker could Merage this to read otherwise forbidden data (e.g. file://localhost/etc/passwd).

If authentication credentials are stored in the “/.netrc file, or Kerberos is in ysethan URL
type (not just file:) that requires authentication is also at Wskedirect such as ftp://some-inter
nal-server/priate-file would then return data@n when the server is password protected.

In the same way, if an unencrypted SSH prite key has been configured for the user running the
libcurl application, SCP: or SFTP: URLs could access pasbvor prvate-key protected
resources, e.g. sftp://user@some-internal-server/etc/passwd

The CURLOPT_REDIR_PBTOCOLS and CURLOPT_NETRC options can be used to atiig
against this kind of attack.

A redirect can also specify a locatiomaigable only on the machine running libcurl, including
seners hidden behind a firgll from the attackr. e.g. http://127.0.0.1/ or http://intranet/delete-
stuff.cgi?delete=all or tftp://bootp-server/pc-config-data

Apps can mitigate against this by disabling CURLOPT_FOWL@CATION and handling redi-

rects itself, sanitizing URLs as necessaijternately an gp could lese QURLOPT_FOL-
LOWLOCATION enabled but set CURLOPT_REDIR ®ROCOLS and install a CUR-
LOPT_OPENSOCKETFUNCTION callback function in which addresses are sanitized before use.

Private Resources
A user who can control the DNS server of a domain being passed in within a URL can change the
address of the host to a local,vateé address which a semside libcurl-using application could
then use. e.g. the innocuous URL http://fuzryies.&le.com/ could actually reselto he
IP address of a server behind aviiat, such as 127.0.0.1 or 10.1.2.3. Apps can mitigatenst)
this by setting a CURLOPT_OPENSOCKETFUNCTION and checking the address before a con-
nection.

All the malicious scenarios gerding redirected URLs apply just as well to non-redirected URLSs,

if the user is allowed to specify an arbitrary URL that could point tovatpriesource. Forxam-

ple, a web app providing a translation service might happily translate file://localhost/etc/passwd
and display the result. Apps can mitigate against this with the CURLORIT®ROLS option

as well as by similar mitigation techniques for redirections.

A malicious FTP server could in response to the PASV command return an IP address and port
number for a server local to the app running libcut behind a fireall. Apps can miticate

libcurl 4 Mar 2009 18

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

against this by using the CURLOPT_FTP_SKIP_PASV_IP option or CURLOPT_FTRPOR

IPv6 Addresses
libcurl will normally handle IPv6 addresses transparently and just as easily as IPv4 addresses. That
means that a sanitizing function that filters out addressse#ik0.0.1 isrt sufficient--the equi-
alent IPv6 addresses :1, :, 0:00::0:1, ::127.0.0.1 afifl:7f00:1 supplied someho by an
attacler would all bypass a na filter and could allev access to undesired local resourcH#v6
also has special address blocke liikk-local and site-local that generally shouldpé acessed
by a sererside libcurl-using applicationA poorly-configured firevall installed in a data center
organization or server may also be configured to limit IPv4 connectioh¢ebre IPv6 connec-
tions wide open. In some cases, the CURL_IPRESOLVE_V4 option can be used to limédesolv
addresses to IPv4 only and bypass these issues.

Uploads
When uploading, a redirect can cause a local (or remote) file toebsritten. Appsmust not
allow any unsanitized URL to be passed in for uploaédéso, CURLOPT_FOLLAVLOCATION
should not be used on uploads. Instead, the app should handle redirects itself, sanitizing each
URL first.

Authentication
Use of CURLOPT_UNRESTRICTED WH could cause authentication information to be sent
to an unknown second serv Apps can mitigte against this by disabling CURLOPT_FOL-
LOWLOCATION and handling redirects itself, sanitizing where necessary.

Use of the CURLATH_ANY option to CURLOPT_HTTRUTH could result in user name and
passwverd being sent in clear text to an HTTP sgninstead, use CURUATH_ANYSAFE which
ensures that the password is encryptesl the network, or else fail the request.

Use of the CURLUSESSL_TRoption to CURLOPT_USE_SSL could result in user name and
passwerd being sent in clear text to an FTP sendnstead, use CURLUSESSL_CONOR to
ensure that an encrypted connection is used or else fail the request.

Cookies
If cookies are enabled and cached, then a user could craft a URL which performs some malicious
action to a site whose authentication is already stored in a cookie. e.g. httpxanail.e
ple.com/delete-stlitgi?delete=all Apps can mitigate against this by disabling cookies or clearing
them between requests.

Dangerous URLs
SCP URLs can containwacommands within the scp: URL, which is a side effect af ttre SCP
protocol is designed. e.g. scp://user.pass@host/a;date >/tmp/test; Apps mustvnarisdiaitized
SCP: URLs to be passed in for downloads.

Denial of Service
A malicious serer could cause libcurl to fetctively hang by sending a trickle of data through, or
even no cata at all but just keeping the TCP connection operis could result in a denial-of-ser
vice attack. The CURLOPT_TIMEOUT and/or CURLOPT_LOW_SPEED_LIMIT options can be
used to mitigate against this.

A malicious server could cause libcurl tdeeftively hang by starting to send data, thexesag

the connection without cleanly closing the TCP connectidhe app could install a CUR-
LOPT_SOCKOPTFUNCTION callback function and set the TCP SO_KEEPALIVE option to

libcurl 4 Mar 2009 19

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

mitigate against this. Setting one of the timeout options would also work against this attack.

A malicious server could cause libcurl tonddoad an infinite amount of data, potentially causing
all of memory or disk to be filled. Setting the CURLOPT_MAXFILESIZE_LARGE option is not
sufficient to guard against this. Instead, the app should monitor the amount of datedrettlin

the write or progress callback and abort once the limit is reached.

A malicious HTTP server could cause an infinite redirection loop, causing a denial-of-service.
This can be mitigated by using the CURLOPT_MAXREDIRS option.

Arbitrary Headers
Usersupplied data must be sanitized when used in optioasdilRLOPT_USERAGENTCUR-
LOPT_HTTPHEADER, CURLOPT_POSTFIELDS and others that are used to generate structured
data. Characters kkembedded carriage returns or ampersands could #lle user to create addi-
tional headers or fields that could cause malicious transactions.

Server-supplied Names
A server can supply data which the application maysome cases, use as a file name. The curl
command-line tool does this with --remote-header-name, using the Content-disposition: header to
generate a file namein application could also use CURLINFO_EFFECTIVE_URL to generate a
file name from a seersupplied redirect URL. Special care must be taken to sanitize such names

to avoid the possibility of a malicious server supplying one liketc/passwd”, "\autoec.bat",
"prn:" or even ".bashrc".

Server Certificates
A secure application should ver use the CURLOPT_SSL_VERIFYPEER option to disable cer
tificate validation. There are numerous attacks that are enabled by apsl tioapfoperly ali-
date serer TLS/SSL certificates, thus enabling a malicious server to spoof a legitimate one.
HTTPS without validated certificates is potentially as insecure as a plain HTTP connection.

Showing What You Do
On a related issue, bavare that gen in stuations like when you hae problems with libcurl and
ask someone for helpyerything you reeal in order to get best possible help might also impose
certain security related risks. Host names, user names, paths, operating system specifics, etc. (not
to mention passwords of course) mayantfbe used by intruders to gain additional information of
a potential target.

Be sure to limit access to application logs ifyttmuld hold prvate or security-related data.
Besides the obvious candidateslilser names and passwords, things lRLs, cookies orwen
file names could also hold sensatticata.

To avoid this problem, you must of course use your common sense. Often, you can just edit out the
sensitve data or just search/replace your true information with faked data.

Multiple Transfers Using the multi Interface

libcurl

The easy intedice as described in detail in this document is a synchronous interface that transfers one file at
a time and doeshteturn until it is done.

The multi interface, on the other hand, allows your program to transfer multiple files in both directions at
the same time, without forcing you to use multiple threads. The name mightinsakm that the multi
interface is for multi-threaded programs, but the truth is almost #eesee Themulti interface can allw a
single-threaded application to perform the same kinds of multiple, simultaneous transfers that multi-

4 Mar 2009 20

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

threaded programs can perform. It allows gnafithe benefits of multi-threaded transfers without the com-
plexity of managing and synchronizing nyahreads.

To wse this interface, you are bettef ibfy ou first understand the basics ofahto use the easy intaate.
The multi interface is simply a way to neakultiple transfers at the same time by adding up multiple easy
handles into a "multi stack".

You create the easy handles you want and you set all the options @ugblikhave keen told abee, and
then you create a multi handle witbrl_multi_init(3) and add all those easy handles to that multi handle
with curl_multi_add_handle(3).

When youve alded the handles youveafor the moment (you can still addwenes at aptime), you start
the transfers by callingurl_multi_perform(3).

curl_multi_perform(3) is asynchronous. It will onlyxecute as little as possible and then return back con-
trol to your program. It is designed toveeblock.

The best usage of this intade is when you do a select() on all possible file descriptors or socketswo kno
when to call libcurl again. This also makes it easy for youaib @nd respond to actions on your own appli-
cation’s ockets/handles. You figure out what to select() for by usimyg multi_fdset(3), that fills in a set

of fd_set variables for you with the particular file descriptors libcurl uses for the moment.

When you then call select(), litreturn when one of the file handles signal action and you then call
curl_multi_perform(3) to allow libcurl to do what it ants to do. @ke note that libcurl does also feature
some time-out code so we advise you twenause \ery long timeouts on select() before you call
curl_multi_perform(3), which thus should be called unconditionalery now and then gen if none of its

file descriptors hae dgnaled readyAnother precaution you should usewajs call curl_multi_fdset(3)
immediately before the select() call since the current set of file descriptors may change when calling a curl
function.

If you want to stop the transfer of one of the easy handles in the stack, you carl uselti remove han-
die(3) to remwe individual easy handles. Remember that easy handles shouid bemsy cleanup(3)ed.

When a transfer within the multi stack has finished, the counter of running transfers (as filled in by
curl_multi_perform(3)) will decrease. When the number reaches zero, all transfers are done.

curl_multi_info_read(3) can be used to get information about completed transfers. It then returns the
CURLcode for each easy transferdlow you to figure out success on each individual transfer.

SSL, Certificates and Other Tricks
[seeding, passwordsels, certificates, ENGINE, ca certs]

Sharing Data Between Easy Handles
You can share some data between easy handles when the easy interface is used, and some data is share
automatically when you use the multi interface.

When you add easy handles to a multi handle, these easy handles will automatically share a lot of the data
that otherwise would be kept on a per-easy handle basis when the easy interface is used.

The DNS cache is shared between handles within a multi handle, making subsequent name @eselying f

and the connection pool that iggt to better all persistent connections and connection re-use is also
shared. If you're using the easy interface, you can still share these between specific easy handles by using
the share interface, sibcurl-share(3).

libcurl 4 Mar 2009 21

libcurl-tutorial(3) libcurl programming libcurl-tutorial(3)

Some things are mer shared automaticaljynot within multi handles, lig for example cookies so the only
way to share that is with the share interface.

Footnotes

[1] libcurl 7.10.3 and later wa the ability to switch wer to chunked TransferEncoding in cases
where HTTP uploads are done with data of an unknown size.

[2] This happens on iWdows machines when libcurl is built and used as a DLLw&er, you can
still do this on Windows if you link with a static library.

[3] The curl-config tool is generated at build-time (on UNDeliggstems) and should be installed
with the 'male install’ or similar instruction that installs the librahgader files, man pages etc.

[4] This behavior was different inevsions before 7.17.0, where strings had to remain valid past the

end of thecurl_easy setopt(3) call.

libcurl 4 Mar 2009 22

