|
- // Protocol Buffers - Google's data interchange format
- // Copyright 2008 Google Inc. All rights reserved.
- // https://developers.google.com/protocol-buffers/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived from
- // this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- // from google3/strings/strutil.cc
-
- #include <google/protobuf/stubs/strutil.h>
-
- #include <errno.h>
- #include <float.h> // FLT_DIG and DBL_DIG
- #include <limits.h>
- #include <stdio.h>
- #include <cmath>
- #include <iterator>
- #include <limits>
-
- #include <google/protobuf/stubs/logging.h>
- #include <google/protobuf/stubs/stl_util.h>
- #include <google/protobuf/io/strtod.h>
-
- #ifdef _WIN32
- // MSVC has only _snprintf, not snprintf.
- //
- // MinGW has both snprintf and _snprintf, but they appear to be different
- // functions. The former is buggy. When invoked like so:
- // char buffer[32];
- // snprintf(buffer, 32, "%.*g\n", FLT_DIG, 1.23e10f);
- // it prints "1.23000e+10". This is plainly wrong: %g should never print
- // trailing zeros after the decimal point. For some reason this bug only
- // occurs with some input values, not all. In any case, _snprintf does the
- // right thing, so we use it.
- #define snprintf _snprintf
- #endif
-
- namespace google {
- namespace protobuf {
-
- // These are defined as macros on some platforms. #undef them so that we can
- // redefine them.
- #undef isxdigit
- #undef isprint
-
- // The definitions of these in ctype.h change based on locale. Since our
- // string manipulation is all in relation to the protocol buffer and C++
- // languages, we always want to use the C locale. So, we re-define these
- // exactly as we want them.
- inline bool isxdigit(char c) {
- return ('0' <= c && c <= '9') ||
- ('a' <= c && c <= 'f') ||
- ('A' <= c && c <= 'F');
- }
-
- inline bool isprint(char c) {
- return c >= 0x20 && c <= 0x7E;
- }
-
- // ----------------------------------------------------------------------
- // ReplaceCharacters
- // Replaces any occurrence of the character 'remove' (or the characters
- // in 'remove') with the character 'replacewith'.
- // ----------------------------------------------------------------------
- void ReplaceCharacters(string *s, const char *remove, char replacewith) {
- const char *str_start = s->c_str();
- const char *str = str_start;
- for (str = strpbrk(str, remove);
- str != nullptr;
- str = strpbrk(str + 1, remove)) {
- (*s)[str - str_start] = replacewith;
- }
- }
-
- void StripWhitespace(string* str) {
- int str_length = str->length();
-
- // Strip off leading whitespace.
- int first = 0;
- while (first < str_length && ascii_isspace(str->at(first))) {
- ++first;
- }
- // If entire string is white space.
- if (first == str_length) {
- str->clear();
- return;
- }
- if (first > 0) {
- str->erase(0, first);
- str_length -= first;
- }
-
- // Strip off trailing whitespace.
- int last = str_length - 1;
- while (last >= 0 && ascii_isspace(str->at(last))) {
- --last;
- }
- if (last != (str_length - 1) && last >= 0) {
- str->erase(last + 1, string::npos);
- }
- }
-
- // ----------------------------------------------------------------------
- // StringReplace()
- // Replace the "old" pattern with the "new" pattern in a string,
- // and append the result to "res". If replace_all is false,
- // it only replaces the first instance of "old."
- // ----------------------------------------------------------------------
-
- void StringReplace(const string& s, const string& oldsub,
- const string& newsub, bool replace_all,
- string* res) {
- if (oldsub.empty()) {
- res->append(s); // if empty, append the given string.
- return;
- }
-
- string::size_type start_pos = 0;
- string::size_type pos;
- do {
- pos = s.find(oldsub, start_pos);
- if (pos == string::npos) {
- break;
- }
- res->append(s, start_pos, pos - start_pos);
- res->append(newsub);
- start_pos = pos + oldsub.size(); // start searching again after the "old"
- } while (replace_all);
- res->append(s, start_pos, s.length() - start_pos);
- }
-
- // ----------------------------------------------------------------------
- // StringReplace()
- // Give me a string and two patterns "old" and "new", and I replace
- // the first instance of "old" in the string with "new", if it
- // exists. If "global" is true; call this repeatedly until it
- // fails. RETURN a new string, regardless of whether the replacement
- // happened or not.
- // ----------------------------------------------------------------------
-
- string StringReplace(const string& s, const string& oldsub,
- const string& newsub, bool replace_all) {
- string ret;
- StringReplace(s, oldsub, newsub, replace_all, &ret);
- return ret;
- }
-
- // ----------------------------------------------------------------------
- // SplitStringUsing()
- // Split a string using a character delimiter. Append the components
- // to 'result'.
- //
- // Note: For multi-character delimiters, this routine will split on *ANY* of
- // the characters in the string, not the entire string as a single delimiter.
- // ----------------------------------------------------------------------
- template <typename ITR>
- static inline
- void SplitStringToIteratorUsing(const string& full,
- const char* delim,
- ITR& result) {
- // Optimize the common case where delim is a single character.
- if (delim[0] != '\0' && delim[1] == '\0') {
- char c = delim[0];
- const char* p = full.data();
- const char* end = p + full.size();
- while (p != end) {
- if (*p == c) {
- ++p;
- } else {
- const char* start = p;
- while (++p != end && *p != c);
- *result++ = string(start, p - start);
- }
- }
- return;
- }
-
- string::size_type begin_index, end_index;
- begin_index = full.find_first_not_of(delim);
- while (begin_index != string::npos) {
- end_index = full.find_first_of(delim, begin_index);
- if (end_index == string::npos) {
- *result++ = full.substr(begin_index);
- return;
- }
- *result++ = full.substr(begin_index, (end_index - begin_index));
- begin_index = full.find_first_not_of(delim, end_index);
- }
- }
-
- void SplitStringUsing(const string& full,
- const char* delim,
- std::vector<string>* result) {
- std::back_insert_iterator< std::vector<string> > it(*result);
- SplitStringToIteratorUsing(full, delim, it);
- }
-
- // Split a string using a character delimiter. Append the components
- // to 'result'. If there are consecutive delimiters, this function
- // will return corresponding empty strings. The string is split into
- // at most the specified number of pieces greedily. This means that the
- // last piece may possibly be split further. To split into as many pieces
- // as possible, specify 0 as the number of pieces.
- //
- // If "full" is the empty string, yields an empty string as the only value.
- //
- // If "pieces" is negative for some reason, it returns the whole string
- // ----------------------------------------------------------------------
- template <typename StringType, typename ITR>
- static inline
- void SplitStringToIteratorAllowEmpty(const StringType& full,
- const char* delim,
- int pieces,
- ITR& result) {
- string::size_type begin_index, end_index;
- begin_index = 0;
-
- for (int i = 0; (i < pieces-1) || (pieces == 0); i++) {
- end_index = full.find_first_of(delim, begin_index);
- if (end_index == string::npos) {
- *result++ = full.substr(begin_index);
- return;
- }
- *result++ = full.substr(begin_index, (end_index - begin_index));
- begin_index = end_index + 1;
- }
- *result++ = full.substr(begin_index);
- }
-
- void SplitStringAllowEmpty(const string& full, const char* delim,
- std::vector<string>* result) {
- std::back_insert_iterator<std::vector<string> > it(*result);
- SplitStringToIteratorAllowEmpty(full, delim, 0, it);
- }
-
- // ----------------------------------------------------------------------
- // JoinStrings()
- // This merges a vector of string components with delim inserted
- // as separaters between components.
- //
- // ----------------------------------------------------------------------
- template <class ITERATOR>
- static void JoinStringsIterator(const ITERATOR& start,
- const ITERATOR& end,
- const char* delim,
- string* result) {
- GOOGLE_CHECK(result != nullptr);
- result->clear();
- int delim_length = strlen(delim);
-
- // Precompute resulting length so we can reserve() memory in one shot.
- int length = 0;
- for (ITERATOR iter = start; iter != end; ++iter) {
- if (iter != start) {
- length += delim_length;
- }
- length += iter->size();
- }
- result->reserve(length);
-
- // Now combine everything.
- for (ITERATOR iter = start; iter != end; ++iter) {
- if (iter != start) {
- result->append(delim, delim_length);
- }
- result->append(iter->data(), iter->size());
- }
- }
-
- void JoinStrings(const std::vector<string>& components,
- const char* delim,
- string * result) {
- JoinStringsIterator(components.begin(), components.end(), delim, result);
- }
-
- // ----------------------------------------------------------------------
- // UnescapeCEscapeSequences()
- // This does all the unescaping that C does: \ooo, \r, \n, etc
- // Returns length of resulting string.
- // The implementation of \x parses any positive number of hex digits,
- // but it is an error if the value requires more than 8 bits, and the
- // result is truncated to 8 bits.
- //
- // The second call stores its errors in a supplied string vector.
- // If the string vector pointer is nullptr, it reports the errors with LOG().
- // ----------------------------------------------------------------------
-
- #define IS_OCTAL_DIGIT(c) (((c) >= '0') && ((c) <= '7'))
-
- // Protocol buffers doesn't ever care about errors, but I don't want to remove
- // the code.
- #define LOG_STRING(LEVEL, VECTOR) GOOGLE_LOG_IF(LEVEL, false)
-
- int UnescapeCEscapeSequences(const char* source, char* dest) {
- return UnescapeCEscapeSequences(source, dest, nullptr);
- }
-
- int UnescapeCEscapeSequences(const char* source, char* dest,
- std::vector<string> *errors) {
- GOOGLE_DCHECK(errors == nullptr) << "Error reporting not implemented.";
-
- char* d = dest;
- const char* p = source;
-
- // Small optimization for case where source = dest and there's no escaping
- while ( p == d && *p != '\0' && *p != '\\' )
- p++, d++;
-
- while (*p != '\0') {
- if (*p != '\\') {
- *d++ = *p++;
- } else {
- switch ( *++p ) { // skip past the '\\'
- case '\0':
- LOG_STRING(ERROR, errors) << "String cannot end with \\";
- *d = '\0';
- return d - dest; // we're done with p
- case 'a': *d++ = '\a'; break;
- case 'b': *d++ = '\b'; break;
- case 'f': *d++ = '\f'; break;
- case 'n': *d++ = '\n'; break;
- case 'r': *d++ = '\r'; break;
- case 't': *d++ = '\t'; break;
- case 'v': *d++ = '\v'; break;
- case '\\': *d++ = '\\'; break;
- case '?': *d++ = '\?'; break; // \? Who knew?
- case '\'': *d++ = '\''; break;
- case '"': *d++ = '\"'; break;
- case '0': case '1': case '2': case '3': // octal digit: 1 to 3 digits
- case '4': case '5': case '6': case '7': {
- char ch = *p - '0';
- if ( IS_OCTAL_DIGIT(p[1]) )
- ch = ch * 8 + *++p - '0';
- if ( IS_OCTAL_DIGIT(p[1]) ) // safe (and easy) to do this twice
- ch = ch * 8 + *++p - '0'; // now points at last digit
- *d++ = ch;
- break;
- }
- case 'x': case 'X': {
- if (!isxdigit(p[1])) {
- if (p[1] == '\0') {
- LOG_STRING(ERROR, errors) << "String cannot end with \\x";
- } else {
- LOG_STRING(ERROR, errors) <<
- "\\x cannot be followed by non-hex digit: \\" << *p << p[1];
- }
- break;
- }
- unsigned int ch = 0;
- const char *hex_start = p;
- while (isxdigit(p[1])) // arbitrarily many hex digits
- ch = (ch << 4) + hex_digit_to_int(*++p);
- if (ch > 0xFF)
- LOG_STRING(ERROR, errors) << "Value of " <<
- "\\" << string(hex_start, p+1-hex_start) << " exceeds 8 bits";
- *d++ = ch;
- break;
- }
- #if 0 // TODO(kenton): Support \u and \U? Requires runetochar().
- case 'u': {
- // \uhhhh => convert 4 hex digits to UTF-8
- char32 rune = 0;
- const char *hex_start = p;
- for (int i = 0; i < 4; ++i) {
- if (isxdigit(p[1])) { // Look one char ahead.
- rune = (rune << 4) + hex_digit_to_int(*++p); // Advance p.
- } else {
- LOG_STRING(ERROR, errors)
- << "\\u must be followed by 4 hex digits: \\"
- << string(hex_start, p+1-hex_start);
- break;
- }
- }
- d += runetochar(d, &rune);
- break;
- }
- case 'U': {
- // \Uhhhhhhhh => convert 8 hex digits to UTF-8
- char32 rune = 0;
- const char *hex_start = p;
- for (int i = 0; i < 8; ++i) {
- if (isxdigit(p[1])) { // Look one char ahead.
- // Don't change rune until we're sure this
- // is within the Unicode limit, but do advance p.
- char32 newrune = (rune << 4) + hex_digit_to_int(*++p);
- if (newrune > 0x10FFFF) {
- LOG_STRING(ERROR, errors)
- << "Value of \\"
- << string(hex_start, p + 1 - hex_start)
- << " exceeds Unicode limit (0x10FFFF)";
- break;
- } else {
- rune = newrune;
- }
- } else {
- LOG_STRING(ERROR, errors)
- << "\\U must be followed by 8 hex digits: \\"
- << string(hex_start, p+1-hex_start);
- break;
- }
- }
- d += runetochar(d, &rune);
- break;
- }
- #endif
- default:
- LOG_STRING(ERROR, errors) << "Unknown escape sequence: \\" << *p;
- }
- p++; // read past letter we escaped
- }
- }
- *d = '\0';
- return d - dest;
- }
-
- // ----------------------------------------------------------------------
- // UnescapeCEscapeString()
- // This does the same thing as UnescapeCEscapeSequences, but creates
- // a new string. The caller does not need to worry about allocating
- // a dest buffer. This should be used for non performance critical
- // tasks such as printing debug messages. It is safe for src and dest
- // to be the same.
- //
- // The second call stores its errors in a supplied string vector.
- // If the string vector pointer is nullptr, it reports the errors with LOG().
- //
- // In the first and second calls, the length of dest is returned. In the
- // the third call, the new string is returned.
- // ----------------------------------------------------------------------
- int UnescapeCEscapeString(const string& src, string* dest) {
- return UnescapeCEscapeString(src, dest, nullptr);
- }
-
- int UnescapeCEscapeString(const string& src, string* dest,
- std::vector<string> *errors) {
- std::unique_ptr<char[]> unescaped(new char[src.size() + 1]);
- int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), errors);
- GOOGLE_CHECK(dest);
- dest->assign(unescaped.get(), len);
- return len;
- }
-
- string UnescapeCEscapeString(const string& src) {
- std::unique_ptr<char[]> unescaped(new char[src.size() + 1]);
- int len = UnescapeCEscapeSequences(src.c_str(), unescaped.get(), nullptr);
- return string(unescaped.get(), len);
- }
-
- // ----------------------------------------------------------------------
- // CEscapeString()
- // CHexEscapeString()
- // Copies 'src' to 'dest', escaping dangerous characters using
- // C-style escape sequences. This is very useful for preparing query
- // flags. 'src' and 'dest' should not overlap. The 'Hex' version uses
- // hexadecimal rather than octal sequences.
- // Returns the number of bytes written to 'dest' (not including the \0)
- // or -1 if there was insufficient space.
- //
- // Currently only \n, \r, \t, ", ', \ and !isprint() chars are escaped.
- // ----------------------------------------------------------------------
- int CEscapeInternal(const char* src, int src_len, char* dest,
- int dest_len, bool use_hex, bool utf8_safe) {
- const char* src_end = src + src_len;
- int used = 0;
- bool last_hex_escape = false; // true if last output char was \xNN
-
- for (; src < src_end; src++) {
- if (dest_len - used < 2) // Need space for two letter escape
- return -1;
-
- bool is_hex_escape = false;
- switch (*src) {
- case '\n': dest[used++] = '\\'; dest[used++] = 'n'; break;
- case '\r': dest[used++] = '\\'; dest[used++] = 'r'; break;
- case '\t': dest[used++] = '\\'; dest[used++] = 't'; break;
- case '\"': dest[used++] = '\\'; dest[used++] = '\"'; break;
- case '\'': dest[used++] = '\\'; dest[used++] = '\''; break;
- case '\\': dest[used++] = '\\'; dest[used++] = '\\'; break;
- default:
- // Note that if we emit \xNN and the src character after that is a hex
- // digit then that digit must be escaped too to prevent it being
- // interpreted as part of the character code by C.
- if ((!utf8_safe || static_cast<uint8>(*src) < 0x80) &&
- (!isprint(*src) ||
- (last_hex_escape && isxdigit(*src)))) {
- if (dest_len - used < 4) // need space for 4 letter escape
- return -1;
- sprintf(dest + used, (use_hex ? "\\x%02x" : "\\%03o"),
- static_cast<uint8>(*src));
- is_hex_escape = use_hex;
- used += 4;
- } else {
- dest[used++] = *src; break;
- }
- }
- last_hex_escape = is_hex_escape;
- }
-
- if (dest_len - used < 1) // make sure that there is room for \0
- return -1;
-
- dest[used] = '\0'; // doesn't count towards return value though
- return used;
- }
-
- // Calculates the length of the C-style escaped version of 'src'.
- // Assumes that non-printable characters are escaped using octal sequences, and
- // that UTF-8 bytes are not handled specially.
- static inline size_t CEscapedLength(StringPiece src) {
- static char c_escaped_len[256] = {
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, // \t, \n, \r
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // ", '
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // '0'..'9'
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 'A'..'O'
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, // 'P'..'Z', '\'
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 'a'..'o'
- 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, // 'p'..'z', DEL
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,
- };
-
- size_t escaped_len = 0;
- for (int i = 0; i < src.size(); ++i) {
- unsigned char c = static_cast<unsigned char>(src[i]);
- escaped_len += c_escaped_len[c];
- }
- return escaped_len;
- }
-
- // ----------------------------------------------------------------------
- // Escapes 'src' using C-style escape sequences, and appends the escaped string
- // to 'dest'. This version is faster than calling CEscapeInternal as it computes
- // the required space using a lookup table, and also does not do any special
- // handling for Hex or UTF-8 characters.
- // ----------------------------------------------------------------------
- void CEscapeAndAppend(StringPiece src, string* dest) {
- size_t escaped_len = CEscapedLength(src);
- if (escaped_len == src.size()) {
- dest->append(src.data(), src.size());
- return;
- }
-
- size_t cur_dest_len = dest->size();
- dest->resize(cur_dest_len + escaped_len);
- char* append_ptr = &(*dest)[cur_dest_len];
-
- for (int i = 0; i < src.size(); ++i) {
- unsigned char c = static_cast<unsigned char>(src[i]);
- switch (c) {
- case '\n': *append_ptr++ = '\\'; *append_ptr++ = 'n'; break;
- case '\r': *append_ptr++ = '\\'; *append_ptr++ = 'r'; break;
- case '\t': *append_ptr++ = '\\'; *append_ptr++ = 't'; break;
- case '\"': *append_ptr++ = '\\'; *append_ptr++ = '\"'; break;
- case '\'': *append_ptr++ = '\\'; *append_ptr++ = '\''; break;
- case '\\': *append_ptr++ = '\\'; *append_ptr++ = '\\'; break;
- default:
- if (!isprint(c)) {
- *append_ptr++ = '\\';
- *append_ptr++ = '0' + c / 64;
- *append_ptr++ = '0' + (c % 64) / 8;
- *append_ptr++ = '0' + c % 8;
- } else {
- *append_ptr++ = c;
- }
- break;
- }
- }
- }
-
- string CEscape(const string& src) {
- string dest;
- CEscapeAndAppend(src, &dest);
- return dest;
- }
-
- namespace strings {
-
- string Utf8SafeCEscape(const string& src) {
- const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
- std::unique_ptr<char[]> dest(new char[dest_length]);
- const int len = CEscapeInternal(src.data(), src.size(),
- dest.get(), dest_length, false, true);
- GOOGLE_DCHECK_GE(len, 0);
- return string(dest.get(), len);
- }
-
- string CHexEscape(const string& src) {
- const int dest_length = src.size() * 4 + 1; // Maximum possible expansion
- std::unique_ptr<char[]> dest(new char[dest_length]);
- const int len = CEscapeInternal(src.data(), src.size(),
- dest.get(), dest_length, true, false);
- GOOGLE_DCHECK_GE(len, 0);
- return string(dest.get(), len);
- }
-
- } // namespace strings
-
- // ----------------------------------------------------------------------
- // strto32_adaptor()
- // strtou32_adaptor()
- // Implementation of strto[u]l replacements that have identical
- // overflow and underflow characteristics for both ILP-32 and LP-64
- // platforms, including errno preservation in error-free calls.
- // ----------------------------------------------------------------------
-
- int32 strto32_adaptor(const char *nptr, char **endptr, int base) {
- const int saved_errno = errno;
- errno = 0;
- const long result = strtol(nptr, endptr, base);
- if (errno == ERANGE && result == LONG_MIN) {
- return kint32min;
- } else if (errno == ERANGE && result == LONG_MAX) {
- return kint32max;
- } else if (errno == 0 && result < kint32min) {
- errno = ERANGE;
- return kint32min;
- } else if (errno == 0 && result > kint32max) {
- errno = ERANGE;
- return kint32max;
- }
- if (errno == 0)
- errno = saved_errno;
- return static_cast<int32>(result);
- }
-
- uint32 strtou32_adaptor(const char *nptr, char **endptr, int base) {
- const int saved_errno = errno;
- errno = 0;
- const unsigned long result = strtoul(nptr, endptr, base);
- if (errno == ERANGE && result == ULONG_MAX) {
- return kuint32max;
- } else if (errno == 0 && result > kuint32max) {
- errno = ERANGE;
- return kuint32max;
- }
- if (errno == 0)
- errno = saved_errno;
- return static_cast<uint32>(result);
- }
-
- inline bool safe_parse_sign(string* text /*inout*/,
- bool* negative_ptr /*output*/) {
- const char* start = text->data();
- const char* end = start + text->size();
-
- // Consume whitespace.
- while (start < end && (start[0] == ' ')) {
- ++start;
- }
- while (start < end && (end[-1] == ' ')) {
- --end;
- }
- if (start >= end) {
- return false;
- }
-
- // Consume sign.
- *negative_ptr = (start[0] == '-');
- if (*negative_ptr || start[0] == '+') {
- ++start;
- if (start >= end) {
- return false;
- }
- }
- *text = text->substr(start - text->data(), end - start);
- return true;
- }
-
- template<typename IntType>
- bool safe_parse_positive_int(
- string text, IntType* value_p) {
- int base = 10;
- IntType value = 0;
- const IntType vmax = std::numeric_limits<IntType>::max();
- assert(vmax > 0);
- assert(vmax >= base);
- const IntType vmax_over_base = vmax / base;
- const char* start = text.data();
- const char* end = start + text.size();
- // loop over digits
- for (; start < end; ++start) {
- unsigned char c = static_cast<unsigned char>(start[0]);
- int digit = c - '0';
- if (digit >= base || digit < 0) {
- *value_p = value;
- return false;
- }
- if (value > vmax_over_base) {
- *value_p = vmax;
- return false;
- }
- value *= base;
- if (value > vmax - digit) {
- *value_p = vmax;
- return false;
- }
- value += digit;
- }
- *value_p = value;
- return true;
- }
-
- template<typename IntType>
- bool safe_parse_negative_int(
- const string& text, IntType* value_p) {
- int base = 10;
- IntType value = 0;
- const IntType vmin = std::numeric_limits<IntType>::min();
- assert(vmin < 0);
- assert(vmin <= 0 - base);
- IntType vmin_over_base = vmin / base;
- // 2003 c++ standard [expr.mul]
- // "... the sign of the remainder is implementation-defined."
- // Although (vmin/base)*base + vmin%base is always vmin.
- // 2011 c++ standard tightens the spec but we cannot rely on it.
- if (vmin % base > 0) {
- vmin_over_base += 1;
- }
- const char* start = text.data();
- const char* end = start + text.size();
- // loop over digits
- for (; start < end; ++start) {
- unsigned char c = static_cast<unsigned char>(start[0]);
- int digit = c - '0';
- if (digit >= base || digit < 0) {
- *value_p = value;
- return false;
- }
- if (value < vmin_over_base) {
- *value_p = vmin;
- return false;
- }
- value *= base;
- if (value < vmin + digit) {
- *value_p = vmin;
- return false;
- }
- value -= digit;
- }
- *value_p = value;
- return true;
- }
-
- template<typename IntType>
- bool safe_int_internal(string text, IntType* value_p) {
- *value_p = 0;
- bool negative;
- if (!safe_parse_sign(&text, &negative)) {
- return false;
- }
- if (!negative) {
- return safe_parse_positive_int(text, value_p);
- } else {
- return safe_parse_negative_int(text, value_p);
- }
- }
-
- template<typename IntType>
- bool safe_uint_internal(string text, IntType* value_p) {
- *value_p = 0;
- bool negative;
- if (!safe_parse_sign(&text, &negative) || negative) {
- return false;
- }
- return safe_parse_positive_int(text, value_p);
- }
-
- // ----------------------------------------------------------------------
- // FastIntToBuffer()
- // FastInt64ToBuffer()
- // FastHexToBuffer()
- // FastHex64ToBuffer()
- // FastHex32ToBuffer()
- // ----------------------------------------------------------------------
-
- // Offset into buffer where FastInt64ToBuffer places the end of string
- // null character. Also used by FastInt64ToBufferLeft.
- static const int kFastInt64ToBufferOffset = 21;
-
- char *FastInt64ToBuffer(int64 i, char* buffer) {
- // We could collapse the positive and negative sections, but that
- // would be slightly slower for positive numbers...
- // 22 bytes is enough to store -2**64, -18446744073709551616.
- char* p = buffer + kFastInt64ToBufferOffset;
- *p-- = '\0';
- if (i >= 0) {
- do {
- *p-- = '0' + i % 10;
- i /= 10;
- } while (i > 0);
- return p + 1;
- } else {
- // On different platforms, % and / have different behaviors for
- // negative numbers, so we need to jump through hoops to make sure
- // we don't divide negative numbers.
- if (i > -10) {
- i = -i;
- *p-- = '0' + i;
- *p = '-';
- return p;
- } else {
- // Make sure we aren't at MIN_INT, in which case we can't say i = -i
- i = i + 10;
- i = -i;
- *p-- = '0' + i % 10;
- // Undo what we did a moment ago
- i = i / 10 + 1;
- do {
- *p-- = '0' + i % 10;
- i /= 10;
- } while (i > 0);
- *p = '-';
- return p;
- }
- }
- }
-
- // Offset into buffer where FastInt32ToBuffer places the end of string
- // null character. Also used by FastInt32ToBufferLeft
- static const int kFastInt32ToBufferOffset = 11;
-
- // Yes, this is a duplicate of FastInt64ToBuffer. But, we need this for the
- // compiler to generate 32 bit arithmetic instructions. It's much faster, at
- // least with 32 bit binaries.
- char *FastInt32ToBuffer(int32 i, char* buffer) {
- // We could collapse the positive and negative sections, but that
- // would be slightly slower for positive numbers...
- // 12 bytes is enough to store -2**32, -4294967296.
- char* p = buffer + kFastInt32ToBufferOffset;
- *p-- = '\0';
- if (i >= 0) {
- do {
- *p-- = '0' + i % 10;
- i /= 10;
- } while (i > 0);
- return p + 1;
- } else {
- // On different platforms, % and / have different behaviors for
- // negative numbers, so we need to jump through hoops to make sure
- // we don't divide negative numbers.
- if (i > -10) {
- i = -i;
- *p-- = '0' + i;
- *p = '-';
- return p;
- } else {
- // Make sure we aren't at MIN_INT, in which case we can't say i = -i
- i = i + 10;
- i = -i;
- *p-- = '0' + i % 10;
- // Undo what we did a moment ago
- i = i / 10 + 1;
- do {
- *p-- = '0' + i % 10;
- i /= 10;
- } while (i > 0);
- *p = '-';
- return p;
- }
- }
- }
-
- char *FastHexToBuffer(int i, char* buffer) {
- GOOGLE_CHECK(i >= 0) << "FastHexToBuffer() wants non-negative integers, not " << i;
-
- static const char *hexdigits = "0123456789abcdef";
- char *p = buffer + 21;
- *p-- = '\0';
- do {
- *p-- = hexdigits[i & 15]; // mod by 16
- i >>= 4; // divide by 16
- } while (i > 0);
- return p + 1;
- }
-
- char *InternalFastHexToBuffer(uint64 value, char* buffer, int num_byte) {
- static const char *hexdigits = "0123456789abcdef";
- buffer[num_byte] = '\0';
- for (int i = num_byte - 1; i >= 0; i--) {
- #ifdef _M_X64
- // MSVC x64 platform has a bug optimizing the uint32(value) in the #else
- // block. Given that the uint32 cast was to improve performance on 32-bit
- // platforms, we use 64-bit '&' directly.
- buffer[i] = hexdigits[value & 0xf];
- #else
- buffer[i] = hexdigits[uint32(value) & 0xf];
- #endif
- value >>= 4;
- }
- return buffer;
- }
-
- char *FastHex64ToBuffer(uint64 value, char* buffer) {
- return InternalFastHexToBuffer(value, buffer, 16);
- }
-
- char *FastHex32ToBuffer(uint32 value, char* buffer) {
- return InternalFastHexToBuffer(value, buffer, 8);
- }
-
- // ----------------------------------------------------------------------
- // FastInt32ToBufferLeft()
- // FastUInt32ToBufferLeft()
- // FastInt64ToBufferLeft()
- // FastUInt64ToBufferLeft()
- //
- // Like the Fast*ToBuffer() functions above, these are intended for speed.
- // Unlike the Fast*ToBuffer() functions, however, these functions write
- // their output to the beginning of the buffer (hence the name, as the
- // output is left-aligned). The caller is responsible for ensuring that
- // the buffer has enough space to hold the output.
- //
- // Returns a pointer to the end of the string (i.e. the null character
- // terminating the string).
- // ----------------------------------------------------------------------
-
- static const char two_ASCII_digits[100][2] = {
- {'0','0'}, {'0','1'}, {'0','2'}, {'0','3'}, {'0','4'},
- {'0','5'}, {'0','6'}, {'0','7'}, {'0','8'}, {'0','9'},
- {'1','0'}, {'1','1'}, {'1','2'}, {'1','3'}, {'1','4'},
- {'1','5'}, {'1','6'}, {'1','7'}, {'1','8'}, {'1','9'},
- {'2','0'}, {'2','1'}, {'2','2'}, {'2','3'}, {'2','4'},
- {'2','5'}, {'2','6'}, {'2','7'}, {'2','8'}, {'2','9'},
- {'3','0'}, {'3','1'}, {'3','2'}, {'3','3'}, {'3','4'},
- {'3','5'}, {'3','6'}, {'3','7'}, {'3','8'}, {'3','9'},
- {'4','0'}, {'4','1'}, {'4','2'}, {'4','3'}, {'4','4'},
- {'4','5'}, {'4','6'}, {'4','7'}, {'4','8'}, {'4','9'},
- {'5','0'}, {'5','1'}, {'5','2'}, {'5','3'}, {'5','4'},
- {'5','5'}, {'5','6'}, {'5','7'}, {'5','8'}, {'5','9'},
- {'6','0'}, {'6','1'}, {'6','2'}, {'6','3'}, {'6','4'},
- {'6','5'}, {'6','6'}, {'6','7'}, {'6','8'}, {'6','9'},
- {'7','0'}, {'7','1'}, {'7','2'}, {'7','3'}, {'7','4'},
- {'7','5'}, {'7','6'}, {'7','7'}, {'7','8'}, {'7','9'},
- {'8','0'}, {'8','1'}, {'8','2'}, {'8','3'}, {'8','4'},
- {'8','5'}, {'8','6'}, {'8','7'}, {'8','8'}, {'8','9'},
- {'9','0'}, {'9','1'}, {'9','2'}, {'9','3'}, {'9','4'},
- {'9','5'}, {'9','6'}, {'9','7'}, {'9','8'}, {'9','9'}
- };
-
- char* FastUInt32ToBufferLeft(uint32 u, char* buffer) {
- uint32 digits;
- const char *ASCII_digits = nullptr;
- // The idea of this implementation is to trim the number of divides to as few
- // as possible by using multiplication and subtraction rather than mod (%),
- // and by outputting two digits at a time rather than one.
- // The huge-number case is first, in the hopes that the compiler will output
- // that case in one branch-free block of code, and only output conditional
- // branches into it from below.
- if (u >= 1000000000) { // >= 1,000,000,000
- digits = u / 100000000; // 100,000,000
- ASCII_digits = two_ASCII_digits[digits];
- buffer[0] = ASCII_digits[0];
- buffer[1] = ASCII_digits[1];
- buffer += 2;
- sublt100_000_000:
- u -= digits * 100000000; // 100,000,000
- lt100_000_000:
- digits = u / 1000000; // 1,000,000
- ASCII_digits = two_ASCII_digits[digits];
- buffer[0] = ASCII_digits[0];
- buffer[1] = ASCII_digits[1];
- buffer += 2;
- sublt1_000_000:
- u -= digits * 1000000; // 1,000,000
- lt1_000_000:
- digits = u / 10000; // 10,000
- ASCII_digits = two_ASCII_digits[digits];
- buffer[0] = ASCII_digits[0];
- buffer[1] = ASCII_digits[1];
- buffer += 2;
- sublt10_000:
- u -= digits * 10000; // 10,000
- lt10_000:
- digits = u / 100;
- ASCII_digits = two_ASCII_digits[digits];
- buffer[0] = ASCII_digits[0];
- buffer[1] = ASCII_digits[1];
- buffer += 2;
- sublt100:
- u -= digits * 100;
- lt100:
- digits = u;
- ASCII_digits = two_ASCII_digits[digits];
- buffer[0] = ASCII_digits[0];
- buffer[1] = ASCII_digits[1];
- buffer += 2;
- done:
- *buffer = 0;
- return buffer;
- }
-
- if (u < 100) {
- digits = u;
- if (u >= 10) goto lt100;
- *buffer++ = '0' + digits;
- goto done;
- }
- if (u < 10000) { // 10,000
- if (u >= 1000) goto lt10_000;
- digits = u / 100;
- *buffer++ = '0' + digits;
- goto sublt100;
- }
- if (u < 1000000) { // 1,000,000
- if (u >= 100000) goto lt1_000_000;
- digits = u / 10000; // 10,000
- *buffer++ = '0' + digits;
- goto sublt10_000;
- }
- if (u < 100000000) { // 100,000,000
- if (u >= 10000000) goto lt100_000_000;
- digits = u / 1000000; // 1,000,000
- *buffer++ = '0' + digits;
- goto sublt1_000_000;
- }
- // we already know that u < 1,000,000,000
- digits = u / 100000000; // 100,000,000
- *buffer++ = '0' + digits;
- goto sublt100_000_000;
- }
-
- char* FastInt32ToBufferLeft(int32 i, char* buffer) {
- uint32 u = 0;
- if (i < 0) {
- *buffer++ = '-';
- u -= i;
- } else {
- u = i;
- }
- return FastUInt32ToBufferLeft(u, buffer);
- }
-
- char* FastUInt64ToBufferLeft(uint64 u64, char* buffer) {
- int digits;
- const char *ASCII_digits = nullptr;
-
- uint32 u = static_cast<uint32>(u64);
- if (u == u64) return FastUInt32ToBufferLeft(u, buffer);
-
- uint64 top_11_digits = u64 / 1000000000;
- buffer = FastUInt64ToBufferLeft(top_11_digits, buffer);
- u = u64 - (top_11_digits * 1000000000);
-
- digits = u / 10000000; // 10,000,000
- GOOGLE_DCHECK_LT(digits, 100);
- ASCII_digits = two_ASCII_digits[digits];
- buffer[0] = ASCII_digits[0];
- buffer[1] = ASCII_digits[1];
- buffer += 2;
- u -= digits * 10000000; // 10,000,000
- digits = u / 100000; // 100,000
- ASCII_digits = two_ASCII_digits[digits];
- buffer[0] = ASCII_digits[0];
- buffer[1] = ASCII_digits[1];
- buffer += 2;
- u -= digits * 100000; // 100,000
- digits = u / 1000; // 1,000
- ASCII_digits = two_ASCII_digits[digits];
- buffer[0] = ASCII_digits[0];
- buffer[1] = ASCII_digits[1];
- buffer += 2;
- u -= digits * 1000; // 1,000
- digits = u / 10;
- ASCII_digits = two_ASCII_digits[digits];
- buffer[0] = ASCII_digits[0];
- buffer[1] = ASCII_digits[1];
- buffer += 2;
- u -= digits * 10;
- digits = u;
- *buffer++ = '0' + digits;
- *buffer = 0;
- return buffer;
- }
-
- char* FastInt64ToBufferLeft(int64 i, char* buffer) {
- uint64 u = 0;
- if (i < 0) {
- *buffer++ = '-';
- u -= i;
- } else {
- u = i;
- }
- return FastUInt64ToBufferLeft(u, buffer);
- }
-
- // ----------------------------------------------------------------------
- // SimpleItoa()
- // Description: converts an integer to a string.
- //
- // Return value: string
- // ----------------------------------------------------------------------
-
- string SimpleItoa(int i) {
- char buffer[kFastToBufferSize];
- return (sizeof(i) == 4) ?
- FastInt32ToBuffer(i, buffer) :
- FastInt64ToBuffer(i, buffer);
- }
-
- string SimpleItoa(unsigned int i) {
- char buffer[kFastToBufferSize];
- return string(buffer, (sizeof(i) == 4) ?
- FastUInt32ToBufferLeft(i, buffer) :
- FastUInt64ToBufferLeft(i, buffer));
- }
-
- string SimpleItoa(long i) {
- char buffer[kFastToBufferSize];
- return (sizeof(i) == 4) ?
- FastInt32ToBuffer(i, buffer) :
- FastInt64ToBuffer(i, buffer);
- }
-
- string SimpleItoa(unsigned long i) {
- char buffer[kFastToBufferSize];
- return string(buffer, (sizeof(i) == 4) ?
- FastUInt32ToBufferLeft(i, buffer) :
- FastUInt64ToBufferLeft(i, buffer));
- }
-
- string SimpleItoa(long long i) {
- char buffer[kFastToBufferSize];
- return (sizeof(i) == 4) ?
- FastInt32ToBuffer(i, buffer) :
- FastInt64ToBuffer(i, buffer);
- }
-
- string SimpleItoa(unsigned long long i) {
- char buffer[kFastToBufferSize];
- return string(buffer, (sizeof(i) == 4) ?
- FastUInt32ToBufferLeft(i, buffer) :
- FastUInt64ToBufferLeft(i, buffer));
- }
-
- // ----------------------------------------------------------------------
- // SimpleDtoa()
- // SimpleFtoa()
- // DoubleToBuffer()
- // FloatToBuffer()
- // We want to print the value without losing precision, but we also do
- // not want to print more digits than necessary. This turns out to be
- // trickier than it sounds. Numbers like 0.2 cannot be represented
- // exactly in binary. If we print 0.2 with a very large precision,
- // e.g. "%.50g", we get "0.2000000000000000111022302462515654042363167".
- // On the other hand, if we set the precision too low, we lose
- // significant digits when printing numbers that actually need them.
- // It turns out there is no precision value that does the right thing
- // for all numbers.
- //
- // Our strategy is to first try printing with a precision that is never
- // over-precise, then parse the result with strtod() to see if it
- // matches. If not, we print again with a precision that will always
- // give a precise result, but may use more digits than necessary.
- //
- // An arguably better strategy would be to use the algorithm described
- // in "How to Print Floating-Point Numbers Accurately" by Steele &
- // White, e.g. as implemented by David M. Gay's dtoa(). It turns out,
- // however, that the following implementation is about as fast as
- // DMG's code. Furthermore, DMG's code locks mutexes, which means it
- // will not scale well on multi-core machines. DMG's code is slightly
- // more accurate (in that it will never use more digits than
- // necessary), but this is probably irrelevant for most users.
- //
- // Rob Pike and Ken Thompson also have an implementation of dtoa() in
- // third_party/fmt/fltfmt.cc. Their implementation is similar to this
- // one in that it makes guesses and then uses strtod() to check them.
- // Their implementation is faster because they use their own code to
- // generate the digits in the first place rather than use snprintf(),
- // thus avoiding format string parsing overhead. However, this makes
- // it considerably more complicated than the following implementation,
- // and it is embedded in a larger library. If speed turns out to be
- // an issue, we could re-implement this in terms of their
- // implementation.
- // ----------------------------------------------------------------------
-
- string SimpleDtoa(double value) {
- char buffer[kDoubleToBufferSize];
- return DoubleToBuffer(value, buffer);
- }
-
- string SimpleFtoa(float value) {
- char buffer[kFloatToBufferSize];
- return FloatToBuffer(value, buffer);
- }
-
- static inline bool IsValidFloatChar(char c) {
- return ('0' <= c && c <= '9') ||
- c == 'e' || c == 'E' ||
- c == '+' || c == '-';
- }
-
- void DelocalizeRadix(char* buffer) {
- // Fast check: if the buffer has a normal decimal point, assume no
- // translation is needed.
- if (strchr(buffer, '.') != nullptr) return;
-
- // Find the first unknown character.
- while (IsValidFloatChar(*buffer)) ++buffer;
-
- if (*buffer == '\0') {
- // No radix character found.
- return;
- }
-
- // We are now pointing at the locale-specific radix character. Replace it
- // with '.'.
- *buffer = '.';
- ++buffer;
-
- if (!IsValidFloatChar(*buffer) && *buffer != '\0') {
- // It appears the radix was a multi-byte character. We need to remove the
- // extra bytes.
- char* target = buffer;
- do { ++buffer; } while (!IsValidFloatChar(*buffer) && *buffer != '\0');
- memmove(target, buffer, strlen(buffer) + 1);
- }
- }
-
- char* DoubleToBuffer(double value, char* buffer) {
- // DBL_DIG is 15 for IEEE-754 doubles, which are used on almost all
- // platforms these days. Just in case some system exists where DBL_DIG
- // is significantly larger -- and risks overflowing our buffer -- we have
- // this assert.
- GOOGLE_COMPILE_ASSERT(DBL_DIG < 20, DBL_DIG_is_too_big);
-
- if (value == std::numeric_limits<double>::infinity()) {
- strcpy(buffer, "inf");
- return buffer;
- } else if (value == -std::numeric_limits<double>::infinity()) {
- strcpy(buffer, "-inf");
- return buffer;
- } else if (std::isnan(value)) {
- strcpy(buffer, "nan");
- return buffer;
- }
-
- int snprintf_result =
- snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG, value);
-
- // The snprintf should never overflow because the buffer is significantly
- // larger than the precision we asked for.
- GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
-
- // We need to make parsed_value volatile in order to force the compiler to
- // write it out to the stack. Otherwise, it may keep the value in a
- // register, and if it does that, it may keep it as a long double instead
- // of a double. This long double may have extra bits that make it compare
- // unequal to "value" even though it would be exactly equal if it were
- // truncated to a double.
- volatile double parsed_value = io::NoLocaleStrtod(buffer, nullptr);
- if (parsed_value != value) {
- int snprintf_result =
- snprintf(buffer, kDoubleToBufferSize, "%.*g", DBL_DIG+2, value);
-
- // Should never overflow; see above.
- GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kDoubleToBufferSize);
- }
-
- DelocalizeRadix(buffer);
- return buffer;
- }
-
- static int memcasecmp(const char *s1, const char *s2, size_t len) {
- const unsigned char *us1 = reinterpret_cast<const unsigned char *>(s1);
- const unsigned char *us2 = reinterpret_cast<const unsigned char *>(s2);
-
- for ( int i = 0; i < len; i++ ) {
- const int diff =
- static_cast<int>(static_cast<unsigned char>(ascii_tolower(us1[i]))) -
- static_cast<int>(static_cast<unsigned char>(ascii_tolower(us2[i])));
- if (diff != 0) return diff;
- }
- return 0;
- }
-
- inline bool CaseEqual(StringPiece s1, StringPiece s2) {
- if (s1.size() != s2.size()) return false;
- return memcasecmp(s1.data(), s2.data(), s1.size()) == 0;
- }
-
- bool safe_strtob(StringPiece str, bool* value) {
- GOOGLE_CHECK(value != nullptr) << "nullptr output boolean given.";
- if (CaseEqual(str, "true") || CaseEqual(str, "t") ||
- CaseEqual(str, "yes") || CaseEqual(str, "y") ||
- CaseEqual(str, "1")) {
- *value = true;
- return true;
- }
- if (CaseEqual(str, "false") || CaseEqual(str, "f") ||
- CaseEqual(str, "no") || CaseEqual(str, "n") ||
- CaseEqual(str, "0")) {
- *value = false;
- return true;
- }
- return false;
- }
-
- bool safe_strtof(const char* str, float* value) {
- char* endptr;
- errno = 0; // errno only gets set on errors
- #if defined(_WIN32) || defined (__hpux) // has no strtof()
- *value = io::NoLocaleStrtod(str, &endptr);
- #else
- *value = strtof(str, &endptr);
- #endif
- return *str != 0 && *endptr == 0 && errno == 0;
- }
-
- bool safe_strtod(const char* str, double* value) {
- char* endptr;
- *value = io::NoLocaleStrtod(str, &endptr);
- if (endptr != str) {
- while (ascii_isspace(*endptr)) ++endptr;
- }
- // Ignore range errors from strtod. The values it
- // returns on underflow and overflow are the right
- // fallback in a robust setting.
- return *str != '\0' && *endptr == '\0';
- }
-
- bool safe_strto32(const string& str, int32* value) {
- return safe_int_internal(str, value);
- }
-
- bool safe_strtou32(const string& str, uint32* value) {
- return safe_uint_internal(str, value);
- }
-
- bool safe_strto64(const string& str, int64* value) {
- return safe_int_internal(str, value);
- }
-
- bool safe_strtou64(const string& str, uint64* value) {
- return safe_uint_internal(str, value);
- }
-
- char* FloatToBuffer(float value, char* buffer) {
- // FLT_DIG is 6 for IEEE-754 floats, which are used on almost all
- // platforms these days. Just in case some system exists where FLT_DIG
- // is significantly larger -- and risks overflowing our buffer -- we have
- // this assert.
- GOOGLE_COMPILE_ASSERT(FLT_DIG < 10, FLT_DIG_is_too_big);
-
- if (value == std::numeric_limits<double>::infinity()) {
- strcpy(buffer, "inf");
- return buffer;
- } else if (value == -std::numeric_limits<double>::infinity()) {
- strcpy(buffer, "-inf");
- return buffer;
- } else if (std::isnan(value)) {
- strcpy(buffer, "nan");
- return buffer;
- }
-
- int snprintf_result =
- snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG, value);
-
- // The snprintf should never overflow because the buffer is significantly
- // larger than the precision we asked for.
- GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
-
- float parsed_value;
- if (!safe_strtof(buffer, &parsed_value) || parsed_value != value) {
- int snprintf_result =
- snprintf(buffer, kFloatToBufferSize, "%.*g", FLT_DIG+3, value);
-
- // Should never overflow; see above.
- GOOGLE_DCHECK(snprintf_result > 0 && snprintf_result < kFloatToBufferSize);
- }
-
- DelocalizeRadix(buffer);
- return buffer;
- }
-
- namespace strings {
-
- AlphaNum::AlphaNum(strings::Hex hex) {
- char *const end = &digits[kFastToBufferSize];
- char *writer = end;
- uint64 value = hex.value;
- uint64 width = hex.spec;
- // We accomplish minimum width by OR'ing in 0x10000 to the user's value,
- // where 0x10000 is the smallest hex number that is as wide as the user
- // asked for.
- uint64 mask = ((static_cast<uint64>(1) << (width - 1) * 4)) | value;
- static const char hexdigits[] = "0123456789abcdef";
- do {
- *--writer = hexdigits[value & 0xF];
- value >>= 4;
- mask >>= 4;
- } while (mask != 0);
- piece_data_ = writer;
- piece_size_ = end - writer;
- }
-
- } // namespace strings
-
- // ----------------------------------------------------------------------
- // StrCat()
- // This merges the given strings or integers, with no delimiter. This
- // is designed to be the fastest possible way to construct a string out
- // of a mix of raw C strings, C++ strings, and integer values.
- // ----------------------------------------------------------------------
-
- // Append is merely a version of memcpy that returns the address of the byte
- // after the area just overwritten. It comes in multiple flavors to minimize
- // call overhead.
- static char *Append1(char *out, const AlphaNum &x) {
- memcpy(out, x.data(), x.size());
- return out + x.size();
- }
-
- static char *Append2(char *out, const AlphaNum &x1, const AlphaNum &x2) {
- memcpy(out, x1.data(), x1.size());
- out += x1.size();
-
- memcpy(out, x2.data(), x2.size());
- return out + x2.size();
- }
-
- static char *Append4(char *out,
- const AlphaNum &x1, const AlphaNum &x2,
- const AlphaNum &x3, const AlphaNum &x4) {
- memcpy(out, x1.data(), x1.size());
- out += x1.size();
-
- memcpy(out, x2.data(), x2.size());
- out += x2.size();
-
- memcpy(out, x3.data(), x3.size());
- out += x3.size();
-
- memcpy(out, x4.data(), x4.size());
- return out + x4.size();
- }
-
- string StrCat(const AlphaNum &a, const AlphaNum &b) {
- string result;
- result.resize(a.size() + b.size());
- char *const begin = &*result.begin();
- char *out = Append2(begin, a, b);
- GOOGLE_DCHECK_EQ(out, begin + result.size());
- return result;
- }
-
- string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) {
- string result;
- result.resize(a.size() + b.size() + c.size());
- char *const begin = &*result.begin();
- char *out = Append2(begin, a, b);
- out = Append1(out, c);
- GOOGLE_DCHECK_EQ(out, begin + result.size());
- return result;
- }
-
- string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
- const AlphaNum &d) {
- string result;
- result.resize(a.size() + b.size() + c.size() + d.size());
- char *const begin = &*result.begin();
- char *out = Append4(begin, a, b, c, d);
- GOOGLE_DCHECK_EQ(out, begin + result.size());
- return result;
- }
-
- string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
- const AlphaNum &d, const AlphaNum &e) {
- string result;
- result.resize(a.size() + b.size() + c.size() + d.size() + e.size());
- char *const begin = &*result.begin();
- char *out = Append4(begin, a, b, c, d);
- out = Append1(out, e);
- GOOGLE_DCHECK_EQ(out, begin + result.size());
- return result;
- }
-
- string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
- const AlphaNum &d, const AlphaNum &e, const AlphaNum &f) {
- string result;
- result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
- f.size());
- char *const begin = &*result.begin();
- char *out = Append4(begin, a, b, c, d);
- out = Append2(out, e, f);
- GOOGLE_DCHECK_EQ(out, begin + result.size());
- return result;
- }
-
- string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
- const AlphaNum &d, const AlphaNum &e, const AlphaNum &f,
- const AlphaNum &g) {
- string result;
- result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
- f.size() + g.size());
- char *const begin = &*result.begin();
- char *out = Append4(begin, a, b, c, d);
- out = Append2(out, e, f);
- out = Append1(out, g);
- GOOGLE_DCHECK_EQ(out, begin + result.size());
- return result;
- }
-
- string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
- const AlphaNum &d, const AlphaNum &e, const AlphaNum &f,
- const AlphaNum &g, const AlphaNum &h) {
- string result;
- result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
- f.size() + g.size() + h.size());
- char *const begin = &*result.begin();
- char *out = Append4(begin, a, b, c, d);
- out = Append4(out, e, f, g, h);
- GOOGLE_DCHECK_EQ(out, begin + result.size());
- return result;
- }
-
- string StrCat(const AlphaNum &a, const AlphaNum &b, const AlphaNum &c,
- const AlphaNum &d, const AlphaNum &e, const AlphaNum &f,
- const AlphaNum &g, const AlphaNum &h, const AlphaNum &i) {
- string result;
- result.resize(a.size() + b.size() + c.size() + d.size() + e.size() +
- f.size() + g.size() + h.size() + i.size());
- char *const begin = &*result.begin();
- char *out = Append4(begin, a, b, c, d);
- out = Append4(out, e, f, g, h);
- out = Append1(out, i);
- GOOGLE_DCHECK_EQ(out, begin + result.size());
- return result;
- }
-
- // It's possible to call StrAppend with a char * pointer that is partway into
- // the string we're appending to. However the results of this are random.
- // Therefore, check for this in debug mode. Use unsigned math so we only have
- // to do one comparison.
- #define GOOGLE_DCHECK_NO_OVERLAP(dest, src) \
- GOOGLE_DCHECK_GT(uintptr_t((src).data() - (dest).data()), \
- uintptr_t((dest).size()))
-
- void StrAppend(string *result, const AlphaNum &a) {
- GOOGLE_DCHECK_NO_OVERLAP(*result, a);
- result->append(a.data(), a.size());
- }
-
- void StrAppend(string *result, const AlphaNum &a, const AlphaNum &b) {
- GOOGLE_DCHECK_NO_OVERLAP(*result, a);
- GOOGLE_DCHECK_NO_OVERLAP(*result, b);
- string::size_type old_size = result->size();
- result->resize(old_size + a.size() + b.size());
- char *const begin = &*result->begin();
- char *out = Append2(begin + old_size, a, b);
- GOOGLE_DCHECK_EQ(out, begin + result->size());
- }
-
- void StrAppend(string *result,
- const AlphaNum &a, const AlphaNum &b, const AlphaNum &c) {
- GOOGLE_DCHECK_NO_OVERLAP(*result, a);
- GOOGLE_DCHECK_NO_OVERLAP(*result, b);
- GOOGLE_DCHECK_NO_OVERLAP(*result, c);
- string::size_type old_size = result->size();
- result->resize(old_size + a.size() + b.size() + c.size());
- char *const begin = &*result->begin();
- char *out = Append2(begin + old_size, a, b);
- out = Append1(out, c);
- GOOGLE_DCHECK_EQ(out, begin + result->size());
- }
-
- void StrAppend(string *result,
- const AlphaNum &a, const AlphaNum &b,
- const AlphaNum &c, const AlphaNum &d) {
- GOOGLE_DCHECK_NO_OVERLAP(*result, a);
- GOOGLE_DCHECK_NO_OVERLAP(*result, b);
- GOOGLE_DCHECK_NO_OVERLAP(*result, c);
- GOOGLE_DCHECK_NO_OVERLAP(*result, d);
- string::size_type old_size = result->size();
- result->resize(old_size + a.size() + b.size() + c.size() + d.size());
- char *const begin = &*result->begin();
- char *out = Append4(begin + old_size, a, b, c, d);
- GOOGLE_DCHECK_EQ(out, begin + result->size());
- }
-
- int GlobalReplaceSubstring(const string& substring,
- const string& replacement,
- string* s) {
- GOOGLE_CHECK(s != nullptr);
- if (s->empty() || substring.empty())
- return 0;
- string tmp;
- int num_replacements = 0;
- int pos = 0;
- for (int match_pos = s->find(substring.data(), pos, substring.length());
- match_pos != string::npos;
- pos = match_pos + substring.length(),
- match_pos = s->find(substring.data(), pos, substring.length())) {
- ++num_replacements;
- // Append the original content before the match.
- tmp.append(*s, pos, match_pos - pos);
- // Append the replacement for the match.
- tmp.append(replacement.begin(), replacement.end());
- }
- // Append the content after the last match. If no replacements were made, the
- // original string is left untouched.
- if (num_replacements > 0) {
- tmp.append(*s, pos, s->length() - pos);
- s->swap(tmp);
- }
- return num_replacements;
- }
-
- int CalculateBase64EscapedLen(int input_len, bool do_padding) {
- // Base64 encodes three bytes of input at a time. If the input is not
- // divisible by three, we pad as appropriate.
- //
- // (from http://tools.ietf.org/html/rfc3548)
- // Special processing is performed if fewer than 24 bits are available
- // at the end of the data being encoded. A full encoding quantum is
- // always completed at the end of a quantity. When fewer than 24 input
- // bits are available in an input group, zero bits are added (on the
- // right) to form an integral number of 6-bit groups. Padding at the
- // end of the data is performed using the '=' character. Since all base
- // 64 input is an integral number of octets, only the following cases
- // can arise:
-
-
- // Base64 encodes each three bytes of input into four bytes of output.
- int len = (input_len / 3) * 4;
-
- if (input_len % 3 == 0) {
- // (from http://tools.ietf.org/html/rfc3548)
- // (1) the final quantum of encoding input is an integral multiple of 24
- // bits; here, the final unit of encoded output will be an integral
- // multiple of 4 characters with no "=" padding,
- } else if (input_len % 3 == 1) {
- // (from http://tools.ietf.org/html/rfc3548)
- // (2) the final quantum of encoding input is exactly 8 bits; here, the
- // final unit of encoded output will be two characters followed by two
- // "=" padding characters, or
- len += 2;
- if (do_padding) {
- len += 2;
- }
- } else { // (input_len % 3 == 2)
- // (from http://tools.ietf.org/html/rfc3548)
- // (3) the final quantum of encoding input is exactly 16 bits; here, the
- // final unit of encoded output will be three characters followed by one
- // "=" padding character.
- len += 3;
- if (do_padding) {
- len += 1;
- }
- }
-
- assert(len >= input_len); // make sure we didn't overflow
- return len;
- }
-
- // Base64Escape does padding, so this calculation includes padding.
- int CalculateBase64EscapedLen(int input_len) {
- return CalculateBase64EscapedLen(input_len, true);
- }
-
- // ----------------------------------------------------------------------
- // int Base64Unescape() - base64 decoder
- // int Base64Escape() - base64 encoder
- // int WebSafeBase64Unescape() - Google's variation of base64 decoder
- // int WebSafeBase64Escape() - Google's variation of base64 encoder
- //
- // Check out
- // http://tools.ietf.org/html/rfc2045 for formal description, but what we
- // care about is that...
- // Take the encoded stuff in groups of 4 characters and turn each
- // character into a code 0 to 63 thus:
- // A-Z map to 0 to 25
- // a-z map to 26 to 51
- // 0-9 map to 52 to 61
- // +(- for WebSafe) maps to 62
- // /(_ for WebSafe) maps to 63
- // There will be four numbers, all less than 64 which can be represented
- // by a 6 digit binary number (aaaaaa, bbbbbb, cccccc, dddddd respectively).
- // Arrange the 6 digit binary numbers into three bytes as such:
- // aaaaaabb bbbbcccc ccdddddd
- // Equals signs (one or two) are used at the end of the encoded block to
- // indicate that the text was not an integer multiple of three bytes long.
- // ----------------------------------------------------------------------
-
- int Base64UnescapeInternal(const char *src_param, int szsrc,
- char *dest, int szdest,
- const signed char* unbase64) {
- static const char kPad64Equals = '=';
- static const char kPad64Dot = '.';
-
- int decode = 0;
- int destidx = 0;
- int state = 0;
- unsigned int ch = 0;
- unsigned int temp = 0;
-
- // If "char" is signed by default, using *src as an array index results in
- // accessing negative array elements. Treat the input as a pointer to
- // unsigned char to avoid this.
- const unsigned char *src = reinterpret_cast<const unsigned char*>(src_param);
-
- // The GET_INPUT macro gets the next input character, skipping
- // over any whitespace, and stopping when we reach the end of the
- // string or when we read any non-data character. The arguments are
- // an arbitrary identifier (used as a label for goto) and the number
- // of data bytes that must remain in the input to avoid aborting the
- // loop.
- #define GET_INPUT(label, remain) \
- label: \
- --szsrc; \
- ch = *src++; \
- decode = unbase64[ch]; \
- if (decode < 0) { \
- if (ascii_isspace(ch) && szsrc >= remain) \
- goto label; \
- state = 4 - remain; \
- break; \
- }
-
- // if dest is null, we're just checking to see if it's legal input
- // rather than producing output. (I suspect this could just be done
- // with a regexp...). We duplicate the loop so this test can be
- // outside it instead of in every iteration.
-
- if (dest) {
- // This loop consumes 4 input bytes and produces 3 output bytes
- // per iteration. We can't know at the start that there is enough
- // data left in the string for a full iteration, so the loop may
- // break out in the middle; if so 'state' will be set to the
- // number of input bytes read.
-
- while (szsrc >= 4) {
- // We'll start by optimistically assuming that the next four
- // bytes of the string (src[0..3]) are four good data bytes
- // (that is, no nulls, whitespace, padding chars, or illegal
- // chars). We need to test src[0..2] for nulls individually
- // before constructing temp to preserve the property that we
- // never read past a null in the string (no matter how long
- // szsrc claims the string is).
-
- if (!src[0] || !src[1] || !src[2] ||
- (temp = ((unsigned(unbase64[src[0]]) << 18) |
- (unsigned(unbase64[src[1]]) << 12) |
- (unsigned(unbase64[src[2]]) << 6) |
- (unsigned(unbase64[src[3]])))) & 0x80000000) {
- // Iff any of those four characters was bad (null, illegal,
- // whitespace, padding), then temp's high bit will be set
- // (because unbase64[] is -1 for all bad characters).
- //
- // We'll back up and resort to the slower decoder, which knows
- // how to handle those cases.
-
- GET_INPUT(first, 4);
- temp = decode;
- GET_INPUT(second, 3);
- temp = (temp << 6) | decode;
- GET_INPUT(third, 2);
- temp = (temp << 6) | decode;
- GET_INPUT(fourth, 1);
- temp = (temp << 6) | decode;
- } else {
- // We really did have four good data bytes, so advance four
- // characters in the string.
-
- szsrc -= 4;
- src += 4;
- decode = -1;
- ch = '\0';
- }
-
- // temp has 24 bits of input, so write that out as three bytes.
-
- if (destidx+3 > szdest) return -1;
- dest[destidx+2] = temp;
- temp >>= 8;
- dest[destidx+1] = temp;
- temp >>= 8;
- dest[destidx] = temp;
- destidx += 3;
- }
- } else {
- while (szsrc >= 4) {
- if (!src[0] || !src[1] || !src[2] ||
- (temp = ((unsigned(unbase64[src[0]]) << 18) |
- (unsigned(unbase64[src[1]]) << 12) |
- (unsigned(unbase64[src[2]]) << 6) |
- (unsigned(unbase64[src[3]])))) & 0x80000000) {
- GET_INPUT(first_no_dest, 4);
- GET_INPUT(second_no_dest, 3);
- GET_INPUT(third_no_dest, 2);
- GET_INPUT(fourth_no_dest, 1);
- } else {
- szsrc -= 4;
- src += 4;
- decode = -1;
- ch = '\0';
- }
- destidx += 3;
- }
- }
-
- #undef GET_INPUT
-
- // if the loop terminated because we read a bad character, return
- // now.
- if (decode < 0 && ch != '\0' &&
- ch != kPad64Equals && ch != kPad64Dot && !ascii_isspace(ch))
- return -1;
-
- if (ch == kPad64Equals || ch == kPad64Dot) {
- // if we stopped by hitting an '=' or '.', un-read that character -- we'll
- // look at it again when we count to check for the proper number of
- // equals signs at the end.
- ++szsrc;
- --src;
- } else {
- // This loop consumes 1 input byte per iteration. It's used to
- // clean up the 0-3 input bytes remaining when the first, faster
- // loop finishes. 'temp' contains the data from 'state' input
- // characters read by the first loop.
- while (szsrc > 0) {
- --szsrc;
- ch = *src++;
- decode = unbase64[ch];
- if (decode < 0) {
- if (ascii_isspace(ch)) {
- continue;
- } else if (ch == '\0') {
- break;
- } else if (ch == kPad64Equals || ch == kPad64Dot) {
- // back up one character; we'll read it again when we check
- // for the correct number of pad characters at the end.
- ++szsrc;
- --src;
- break;
- } else {
- return -1;
- }
- }
-
- // Each input character gives us six bits of output.
- temp = (temp << 6) | decode;
- ++state;
- if (state == 4) {
- // If we've accumulated 24 bits of output, write that out as
- // three bytes.
- if (dest) {
- if (destidx+3 > szdest) return -1;
- dest[destidx+2] = temp;
- temp >>= 8;
- dest[destidx+1] = temp;
- temp >>= 8;
- dest[destidx] = temp;
- }
- destidx += 3;
- state = 0;
- temp = 0;
- }
- }
- }
-
- // Process the leftover data contained in 'temp' at the end of the input.
- int expected_equals = 0;
- switch (state) {
- case 0:
- // Nothing left over; output is a multiple of 3 bytes.
- break;
-
- case 1:
- // Bad input; we have 6 bits left over.
- return -1;
-
- case 2:
- // Produce one more output byte from the 12 input bits we have left.
- if (dest) {
- if (destidx+1 > szdest) return -1;
- temp >>= 4;
- dest[destidx] = temp;
- }
- ++destidx;
- expected_equals = 2;
- break;
-
- case 3:
- // Produce two more output bytes from the 18 input bits we have left.
- if (dest) {
- if (destidx+2 > szdest) return -1;
- temp >>= 2;
- dest[destidx+1] = temp;
- temp >>= 8;
- dest[destidx] = temp;
- }
- destidx += 2;
- expected_equals = 1;
- break;
-
- default:
- // state should have no other values at this point.
- GOOGLE_LOG(FATAL) << "This can't happen; base64 decoder state = " << state;
- }
-
- // The remainder of the string should be all whitespace, mixed with
- // exactly 0 equals signs, or exactly 'expected_equals' equals
- // signs. (Always accepting 0 equals signs is a google extension
- // not covered in the RFC, as is accepting dot as the pad character.)
-
- int equals = 0;
- while (szsrc > 0 && *src) {
- if (*src == kPad64Equals || *src == kPad64Dot)
- ++equals;
- else if (!ascii_isspace(*src))
- return -1;
- --szsrc;
- ++src;
- }
-
- return (equals == 0 || equals == expected_equals) ? destidx : -1;
- }
-
- // The arrays below were generated by the following code
- // #include <sys/time.h>
- // #include <stdlib.h>
- // #include <string.h>
- // #include <stdio.h>
- // main()
- // {
- // static const char Base64[] =
- // "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
- // const char *pos;
- // int idx, i, j;
- // printf(" ");
- // for (i = 0; i < 255; i += 8) {
- // for (j = i; j < i + 8; j++) {
- // pos = strchr(Base64, j);
- // if ((pos == nullptr) || (j == 0))
- // idx = -1;
- // else
- // idx = pos - Base64;
- // if (idx == -1)
- // printf(" %2d, ", idx);
- // else
- // printf(" %2d/""*%c*""/,", idx, j);
- // }
- // printf("\n ");
- // }
- // }
- //
- // where the value of "Base64[]" was replaced by one of the base-64 conversion
- // tables from the functions below.
- static const signed char kUnBase64[] = {
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, 62/*+*/, -1, -1, -1, 63/*/ */,
- 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
- 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1,
- -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/,
- 7/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
- 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
- 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, -1,
- -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
- 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
- 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
- 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1
- };
- static const signed char kUnWebSafeBase64[] = {
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, 62/*-*/, -1, -1,
- 52/*0*/, 53/*1*/, 54/*2*/, 55/*3*/, 56/*4*/, 57/*5*/, 58/*6*/, 59/*7*/,
- 60/*8*/, 61/*9*/, -1, -1, -1, -1, -1, -1,
- -1, 0/*A*/, 1/*B*/, 2/*C*/, 3/*D*/, 4/*E*/, 5/*F*/, 6/*G*/,
- 7/*H*/, 8/*I*/, 9/*J*/, 10/*K*/, 11/*L*/, 12/*M*/, 13/*N*/, 14/*O*/,
- 15/*P*/, 16/*Q*/, 17/*R*/, 18/*S*/, 19/*T*/, 20/*U*/, 21/*V*/, 22/*W*/,
- 23/*X*/, 24/*Y*/, 25/*Z*/, -1, -1, -1, -1, 63/*_*/,
- -1, 26/*a*/, 27/*b*/, 28/*c*/, 29/*d*/, 30/*e*/, 31/*f*/, 32/*g*/,
- 33/*h*/, 34/*i*/, 35/*j*/, 36/*k*/, 37/*l*/, 38/*m*/, 39/*n*/, 40/*o*/,
- 41/*p*/, 42/*q*/, 43/*r*/, 44/*s*/, 45/*t*/, 46/*u*/, 47/*v*/, 48/*w*/,
- 49/*x*/, 50/*y*/, 51/*z*/, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1,
- -1, -1, -1, -1, -1, -1, -1, -1
- };
-
- int WebSafeBase64Unescape(const char *src, int szsrc, char *dest, int szdest) {
- return Base64UnescapeInternal(src, szsrc, dest, szdest, kUnWebSafeBase64);
- }
-
- static bool Base64UnescapeInternal(const char* src, int slen, string* dest,
- const signed char* unbase64) {
- // Determine the size of the output string. Base64 encodes every 3 bytes into
- // 4 characters. any leftover chars are added directly for good measure.
- // This is documented in the base64 RFC: http://tools.ietf.org/html/rfc3548
- const int dest_len = 3 * (slen / 4) + (slen % 4);
-
- dest->resize(dest_len);
-
- // We are getting the destination buffer by getting the beginning of the
- // string and converting it into a char *.
- const int len = Base64UnescapeInternal(src, slen, string_as_array(dest),
- dest_len, unbase64);
- if (len < 0) {
- dest->clear();
- return false;
- }
-
- // could be shorter if there was padding
- GOOGLE_DCHECK_LE(len, dest_len);
- dest->erase(len);
-
- return true;
- }
-
- bool Base64Unescape(StringPiece src, string* dest) {
- return Base64UnescapeInternal(src.data(), src.size(), dest, kUnBase64);
- }
-
- bool WebSafeBase64Unescape(StringPiece src, string* dest) {
- return Base64UnescapeInternal(src.data(), src.size(), dest, kUnWebSafeBase64);
- }
-
- int Base64EscapeInternal(const unsigned char *src, int szsrc,
- char *dest, int szdest, const char *base64,
- bool do_padding) {
- static const char kPad64 = '=';
-
- if (szsrc <= 0) return 0;
-
- if (szsrc * 4 > szdest * 3) return 0;
-
- char *cur_dest = dest;
- const unsigned char *cur_src = src;
-
- char *limit_dest = dest + szdest;
- const unsigned char *limit_src = src + szsrc;
-
- // Three bytes of data encodes to four characters of cyphertext.
- // So we can pump through three-byte chunks atomically.
- while (cur_src < limit_src - 3) { // keep going as long as we have >= 32 bits
- uint32 in = BigEndian::Load32(cur_src) >> 8;
-
- cur_dest[0] = base64[in >> 18];
- in &= 0x3FFFF;
- cur_dest[1] = base64[in >> 12];
- in &= 0xFFF;
- cur_dest[2] = base64[in >> 6];
- in &= 0x3F;
- cur_dest[3] = base64[in];
-
- cur_dest += 4;
- cur_src += 3;
- }
- // To save time, we didn't update szdest or szsrc in the loop. So do it now.
- szdest = limit_dest - cur_dest;
- szsrc = limit_src - cur_src;
-
- /* now deal with the tail (<=3 bytes) */
- switch (szsrc) {
- case 0:
- // Nothing left; nothing more to do.
- break;
- case 1: {
- // One byte left: this encodes to two characters, and (optionally)
- // two pad characters to round out the four-character cypherblock.
- if ((szdest -= 2) < 0) return 0;
- uint32 in = cur_src[0];
- cur_dest[0] = base64[in >> 2];
- in &= 0x3;
- cur_dest[1] = base64[in << 4];
- cur_dest += 2;
- if (do_padding) {
- if ((szdest -= 2) < 0) return 0;
- cur_dest[0] = kPad64;
- cur_dest[1] = kPad64;
- cur_dest += 2;
- }
- break;
- }
- case 2: {
- // Two bytes left: this encodes to three characters, and (optionally)
- // one pad character to round out the four-character cypherblock.
- if ((szdest -= 3) < 0) return 0;
- uint32 in = BigEndian::Load16(cur_src);
- cur_dest[0] = base64[in >> 10];
- in &= 0x3FF;
- cur_dest[1] = base64[in >> 4];
- in &= 0x00F;
- cur_dest[2] = base64[in << 2];
- cur_dest += 3;
- if (do_padding) {
- if ((szdest -= 1) < 0) return 0;
- cur_dest[0] = kPad64;
- cur_dest += 1;
- }
- break;
- }
- case 3: {
- // Three bytes left: same as in the big loop above. We can't do this in
- // the loop because the loop above always reads 4 bytes, and the fourth
- // byte is past the end of the input.
- if ((szdest -= 4) < 0) return 0;
- uint32 in = (cur_src[0] << 16) + BigEndian::Load16(cur_src + 1);
- cur_dest[0] = base64[in >> 18];
- in &= 0x3FFFF;
- cur_dest[1] = base64[in >> 12];
- in &= 0xFFF;
- cur_dest[2] = base64[in >> 6];
- in &= 0x3F;
- cur_dest[3] = base64[in];
- cur_dest += 4;
- break;
- }
- default:
- // Should not be reached: blocks of 4 bytes are handled
- // in the while loop before this switch statement.
- GOOGLE_LOG(FATAL) << "Logic problem? szsrc = " << szsrc;
- break;
- }
- return (cur_dest - dest);
- }
-
- static const char kBase64Chars[] =
- "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
-
- static const char kWebSafeBase64Chars[] =
- "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789-_";
-
- int Base64Escape(const unsigned char *src, int szsrc, char *dest, int szdest) {
- return Base64EscapeInternal(src, szsrc, dest, szdest, kBase64Chars, true);
- }
- int WebSafeBase64Escape(const unsigned char *src, int szsrc, char *dest,
- int szdest, bool do_padding) {
- return Base64EscapeInternal(src, szsrc, dest, szdest,
- kWebSafeBase64Chars, do_padding);
- }
-
- void Base64EscapeInternal(const unsigned char* src, int szsrc,
- string* dest, bool do_padding,
- const char* base64_chars) {
- const int calc_escaped_size =
- CalculateBase64EscapedLen(szsrc, do_padding);
- dest->resize(calc_escaped_size);
- const int escaped_len = Base64EscapeInternal(src, szsrc,
- string_as_array(dest),
- dest->size(),
- base64_chars,
- do_padding);
- GOOGLE_DCHECK_EQ(calc_escaped_size, escaped_len);
- dest->erase(escaped_len);
- }
-
- void Base64Escape(const unsigned char *src, int szsrc,
- string* dest, bool do_padding) {
- Base64EscapeInternal(src, szsrc, dest, do_padding, kBase64Chars);
- }
-
- void WebSafeBase64Escape(const unsigned char *src, int szsrc,
- string *dest, bool do_padding) {
- Base64EscapeInternal(src, szsrc, dest, do_padding, kWebSafeBase64Chars);
- }
-
- void Base64Escape(StringPiece src, string* dest) {
- Base64Escape(reinterpret_cast<const unsigned char*>(src.data()),
- src.size(), dest, true);
- }
-
- void WebSafeBase64Escape(StringPiece src, string* dest) {
- WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.data()),
- src.size(), dest, false);
- }
-
- void WebSafeBase64EscapeWithPadding(StringPiece src, string* dest) {
- WebSafeBase64Escape(reinterpret_cast<const unsigned char*>(src.data()),
- src.size(), dest, true);
- }
-
- // Helper to append a Unicode code point to a string as UTF8, without bringing
- // in any external dependencies.
- int EncodeAsUTF8Char(uint32 code_point, char* output) {
- uint32 tmp = 0;
- int len = 0;
- if (code_point <= 0x7f) {
- tmp = code_point;
- len = 1;
- } else if (code_point <= 0x07ff) {
- tmp = 0x0000c080 |
- ((code_point & 0x07c0) << 2) |
- (code_point & 0x003f);
- len = 2;
- } else if (code_point <= 0xffff) {
- tmp = 0x00e08080 |
- ((code_point & 0xf000) << 4) |
- ((code_point & 0x0fc0) << 2) |
- (code_point & 0x003f);
- len = 3;
- } else {
- // UTF-16 is only defined for code points up to 0x10FFFF, and UTF-8 is
- // normally only defined up to there as well.
- tmp = 0xf0808080 |
- ((code_point & 0x1c0000) << 6) |
- ((code_point & 0x03f000) << 4) |
- ((code_point & 0x000fc0) << 2) |
- (code_point & 0x003f);
- len = 4;
- }
- tmp = ghtonl(tmp);
- memcpy(output, reinterpret_cast<const char*>(&tmp) + sizeof(tmp) - len, len);
- return len;
- }
-
- // Table of UTF-8 character lengths, based on first byte
- static const unsigned char kUTF8LenTbl[256] = {
- 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
- 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
- 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
- 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
-
- 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
- 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1, 1,1,1,1,1,1,1,1,
- 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,
- 3,3,3,3,3,3,3,3, 3,3,3,3,3,3,3,3, 4,4,4,4,4,4,4,4, 4,4,4,4,4,4,4,4
- };
-
- // Return length of a single UTF-8 source character
- int UTF8FirstLetterNumBytes(const char* src, int len) {
- if (len == 0) {
- return 0;
- }
- return kUTF8LenTbl[*reinterpret_cast<const uint8*>(src)];
- }
-
- // ----------------------------------------------------------------------
- // CleanStringLineEndings()
- // Clean up a multi-line string to conform to Unix line endings.
- // Reads from src and appends to dst, so usually dst should be empty.
- //
- // If there is no line ending at the end of a non-empty string, it can
- // be added automatically.
- //
- // Four different types of input are correctly handled:
- //
- // - Unix/Linux files: line ending is LF: pass through unchanged
- //
- // - DOS/Windows files: line ending is CRLF: convert to LF
- //
- // - Legacy Mac files: line ending is CR: convert to LF
- //
- // - Garbled files: random line endings: convert gracefully
- // lonely CR, lonely LF, CRLF: convert to LF
- //
- // @param src The multi-line string to convert
- // @param dst The converted string is appended to this string
- // @param auto_end_last_line Automatically terminate the last line
- //
- // Limitations:
- //
- // This does not do the right thing for CRCRLF files created by
- // broken programs that do another Unix->DOS conversion on files
- // that are already in CRLF format. For this, a two-pass approach
- // brute-force would be needed that
- //
- // (1) determines the presence of LF (first one is ok)
- // (2) if yes, removes any CR, else convert every CR to LF
-
- void CleanStringLineEndings(const string &src, string *dst,
- bool auto_end_last_line) {
- if (dst->empty()) {
- dst->append(src);
- CleanStringLineEndings(dst, auto_end_last_line);
- } else {
- string tmp = src;
- CleanStringLineEndings(&tmp, auto_end_last_line);
- dst->append(tmp);
- }
- }
-
- void CleanStringLineEndings(string *str, bool auto_end_last_line) {
- ptrdiff_t output_pos = 0;
- bool r_seen = false;
- ptrdiff_t len = str->size();
-
- char *p = &(*str)[0];
-
- for (ptrdiff_t input_pos = 0; input_pos < len;) {
- if (!r_seen && input_pos + 8 < len) {
- uint64_t v = GOOGLE_UNALIGNED_LOAD64(p + input_pos);
- // Loop over groups of 8 bytes at a time until we come across
- // a word that has a byte whose value is less than or equal to
- // '\r' (i.e. could contain a \n (0x0a) or a \r (0x0d) ).
- //
- // We use a has_less macro that quickly tests a whole 64-bit
- // word to see if any of the bytes has a value < N.
- //
- // For more details, see:
- // http://graphics.stanford.edu/~seander/bithacks.html#HasLessInWord
- #define has_less(x, n) (((x) - ~0ULL / 255 * (n)) & ~(x) & ~0ULL / 255 * 128)
- if (!has_less(v, '\r' + 1)) {
- #undef has_less
- // No byte in this word has a value that could be a \r or a \n
- if (output_pos != input_pos) {
- GOOGLE_UNALIGNED_STORE64(p + output_pos, v);
- }
- input_pos += 8;
- output_pos += 8;
- continue;
- }
- }
- string::const_reference in = p[input_pos];
- if (in == '\r') {
- if (r_seen) p[output_pos++] = '\n';
- r_seen = true;
- } else if (in == '\n') {
- if (input_pos != output_pos)
- p[output_pos++] = '\n';
- else
- output_pos++;
- r_seen = false;
- } else {
- if (r_seen) p[output_pos++] = '\n';
- r_seen = false;
- if (input_pos != output_pos)
- p[output_pos++] = in;
- else
- output_pos++;
- }
- input_pos++;
- }
- if (r_seen ||
- (auto_end_last_line && output_pos > 0 && p[output_pos - 1] != '\n')) {
- str->resize(output_pos + 1);
- str->operator[](output_pos) = '\n';
- } else if (output_pos < len) {
- str->resize(output_pos);
- }
- }
-
- } // namespace protobuf
- } // namespace google
|