|
- // Protocol Buffers - Google's data interchange format
- // Copyright 2008 Google Inc. All rights reserved.
- // https://developers.google.com/protocol-buffers/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived from
- // this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- // Author: kenton@google.com (Kenton Varda)
- // Based on original Protocol Buffers design by
- // Sanjay Ghemawat, Jeff Dean, and others.
- //
- // This implementation is heavily optimized to make reads and writes
- // of small values (especially varints) as fast as possible. In
- // particular, we optimize for the common case that a read or a write
- // will not cross the end of the buffer, since we can avoid a lot
- // of branching in this case.
-
- #include <google/protobuf/io/coded_stream.h>
-
- #include <limits.h>
-
- #include <algorithm>
- #include <cstring>
- #include <utility>
-
- #include <google/protobuf/stubs/logging.h>
- #include <google/protobuf/stubs/common.h>
- #include <google/protobuf/arena.h>
- #include <google/protobuf/io/zero_copy_stream.h>
- #include <google/protobuf/io/zero_copy_stream_impl_lite.h>
- #include <google/protobuf/stubs/stl_util.h>
-
-
- #include <google/protobuf/port_def.inc>
-
- namespace google {
- namespace protobuf {
- namespace io {
-
- namespace {
-
- static const int kMaxVarintBytes = 10;
- static const int kMaxVarint32Bytes = 5;
-
-
- inline bool NextNonEmpty(ZeroCopyInputStream* input, const void** data,
- int* size) {
- bool success;
- do {
- success = input->Next(data, size);
- } while (success && *size == 0);
- return success;
- }
-
- } // namespace
-
- // CodedInputStream ==================================================
-
- CodedInputStream::~CodedInputStream() {
- if (input_ != NULL) {
- BackUpInputToCurrentPosition();
- }
- }
-
- // Static.
- int CodedInputStream::default_recursion_limit_ = 100;
-
-
- void CodedInputStream::BackUpInputToCurrentPosition() {
- int backup_bytes = BufferSize() + buffer_size_after_limit_ + overflow_bytes_;
- if (backup_bytes > 0) {
- input_->BackUp(backup_bytes);
-
- // total_bytes_read_ doesn't include overflow_bytes_.
- total_bytes_read_ -= BufferSize() + buffer_size_after_limit_;
- buffer_end_ = buffer_;
- buffer_size_after_limit_ = 0;
- overflow_bytes_ = 0;
- }
- }
-
- inline void CodedInputStream::RecomputeBufferLimits() {
- buffer_end_ += buffer_size_after_limit_;
- int closest_limit = std::min(current_limit_, total_bytes_limit_);
- if (closest_limit < total_bytes_read_) {
- // The limit position is in the current buffer. We must adjust
- // the buffer size accordingly.
- buffer_size_after_limit_ = total_bytes_read_ - closest_limit;
- buffer_end_ -= buffer_size_after_limit_;
- } else {
- buffer_size_after_limit_ = 0;
- }
- }
-
- CodedInputStream::Limit CodedInputStream::PushLimit(int byte_limit) {
- // Current position relative to the beginning of the stream.
- int current_position = CurrentPosition();
-
- Limit old_limit = current_limit_;
-
- // security: byte_limit is possibly evil, so check for negative values
- // and overflow. Also check that the new requested limit is before the
- // previous limit; otherwise we continue to enforce the previous limit.
- if (PROTOBUF_PREDICT_TRUE(byte_limit >= 0 &&
- byte_limit <= INT_MAX - current_position &&
- byte_limit < current_limit_ - current_position)) {
- current_limit_ = current_position + byte_limit;
- RecomputeBufferLimits();
- }
-
- return old_limit;
- }
-
- void CodedInputStream::PopLimit(Limit limit) {
- // The limit passed in is actually the *old* limit, which we returned from
- // PushLimit().
- current_limit_ = limit;
- RecomputeBufferLimits();
-
- // We may no longer be at a legitimate message end. ReadTag() needs to be
- // called again to find out.
- legitimate_message_end_ = false;
- }
-
- std::pair<CodedInputStream::Limit, int>
- CodedInputStream::IncrementRecursionDepthAndPushLimit(int byte_limit) {
- return std::make_pair(PushLimit(byte_limit), --recursion_budget_);
- }
-
- CodedInputStream::Limit CodedInputStream::ReadLengthAndPushLimit() {
- uint32 length;
- return PushLimit(ReadVarint32(&length) ? length : 0);
- }
-
- bool CodedInputStream::DecrementRecursionDepthAndPopLimit(Limit limit) {
- bool result = ConsumedEntireMessage();
- PopLimit(limit);
- GOOGLE_DCHECK_LT(recursion_budget_, recursion_limit_);
- ++recursion_budget_;
- return result;
- }
-
- bool CodedInputStream::CheckEntireMessageConsumedAndPopLimit(Limit limit) {
- bool result = ConsumedEntireMessage();
- PopLimit(limit);
- return result;
- }
-
- int CodedInputStream::BytesUntilLimit() const {
- if (current_limit_ == INT_MAX) return -1;
- int current_position = CurrentPosition();
-
- return current_limit_ - current_position;
- }
-
- void CodedInputStream::SetTotalBytesLimit(int total_bytes_limit) {
- // Make sure the limit isn't already past, since this could confuse other
- // code.
- int current_position = CurrentPosition();
- total_bytes_limit_ = std::max(current_position, total_bytes_limit);
- RecomputeBufferLimits();
- }
-
- int CodedInputStream::BytesUntilTotalBytesLimit() const {
- if (total_bytes_limit_ == INT_MAX) return -1;
- return total_bytes_limit_ - CurrentPosition();
- }
-
- void CodedInputStream::PrintTotalBytesLimitError() {
- GOOGLE_LOG(ERROR)
- << "A protocol message was rejected because it was too "
- "big (more than "
- << total_bytes_limit_
- << " bytes). To increase the limit (or to disable these "
- "warnings), see CodedInputStream::SetTotalBytesLimit() "
- "in third_party/protobuf/src/google/protobuf/io/coded_stream.h.";
- }
-
- bool CodedInputStream::SkipFallback(int count, int original_buffer_size) {
- if (buffer_size_after_limit_ > 0) {
- // We hit a limit inside this buffer. Advance to the limit and fail.
- Advance(original_buffer_size);
- return false;
- }
-
- count -= original_buffer_size;
- buffer_ = NULL;
- buffer_end_ = buffer_;
-
- // Make sure this skip doesn't try to skip past the current limit.
- int closest_limit = std::min(current_limit_, total_bytes_limit_);
- int bytes_until_limit = closest_limit - total_bytes_read_;
- if (bytes_until_limit < count) {
- // We hit the limit. Skip up to it then fail.
- if (bytes_until_limit > 0) {
- total_bytes_read_ = closest_limit;
- input_->Skip(bytes_until_limit);
- }
- return false;
- }
-
- if (!input_->Skip(count)) {
- total_bytes_read_ = input_->ByteCount();
- return false;
- }
- total_bytes_read_ += count;
- return true;
- }
-
- bool CodedInputStream::GetDirectBufferPointer(const void** data, int* size) {
- if (BufferSize() == 0 && !Refresh()) return false;
-
- *data = buffer_;
- *size = BufferSize();
- return true;
- }
-
- bool CodedInputStream::ReadRaw(void* buffer, int size) {
- int current_buffer_size;
- while ((current_buffer_size = BufferSize()) < size) {
- // Reading past end of buffer. Copy what we have, then refresh.
- memcpy(buffer, buffer_, current_buffer_size);
- buffer = reinterpret_cast<uint8*>(buffer) + current_buffer_size;
- size -= current_buffer_size;
- Advance(current_buffer_size);
- if (!Refresh()) return false;
- }
-
- memcpy(buffer, buffer_, size);
- Advance(size);
-
- return true;
- }
-
- bool CodedInputStream::ReadString(std::string* buffer, int size) {
- if (size < 0) return false; // security: size is often user-supplied
-
- if (BufferSize() >= size) {
- STLStringResizeUninitialized(buffer, size);
- std::pair<char*, bool> z = as_string_data(buffer);
- if (z.second) {
- // Oddly enough, memcpy() requires its first two args to be non-NULL even
- // if we copy 0 bytes. So, we have ensured that z.first is non-NULL here.
- GOOGLE_DCHECK(z.first != NULL);
- memcpy(z.first, buffer_, size);
- Advance(size);
- }
- return true;
- }
-
- return ReadStringFallback(buffer, size);
- }
-
- bool CodedInputStream::ReadStringFallback(std::string* buffer, int size) {
- if (!buffer->empty()) {
- buffer->clear();
- }
-
- int closest_limit = std::min(current_limit_, total_bytes_limit_);
- if (closest_limit != INT_MAX) {
- int bytes_to_limit = closest_limit - CurrentPosition();
- if (bytes_to_limit > 0 && size > 0 && size <= bytes_to_limit) {
- buffer->reserve(size);
- }
- }
-
- int current_buffer_size;
- while ((current_buffer_size = BufferSize()) < size) {
- // Some STL implementations "helpfully" crash on buffer->append(NULL, 0).
- if (current_buffer_size != 0) {
- // Note: string1.append(string2) is O(string2.size()) (as opposed to
- // O(string1.size() + string2.size()), which would be bad).
- buffer->append(reinterpret_cast<const char*>(buffer_),
- current_buffer_size);
- }
- size -= current_buffer_size;
- Advance(current_buffer_size);
- if (!Refresh()) return false;
- }
-
- buffer->append(reinterpret_cast<const char*>(buffer_), size);
- Advance(size);
-
- return true;
- }
-
-
- bool CodedInputStream::ReadLittleEndian32Fallback(uint32* value) {
- uint8 bytes[sizeof(*value)];
-
- const uint8* ptr;
- if (BufferSize() >= sizeof(*value)) {
- // Fast path: Enough bytes in the buffer to read directly.
- ptr = buffer_;
- Advance(sizeof(*value));
- } else {
- // Slow path: Had to read past the end of the buffer.
- if (!ReadRaw(bytes, sizeof(*value))) return false;
- ptr = bytes;
- }
- ReadLittleEndian32FromArray(ptr, value);
- return true;
- }
-
- bool CodedInputStream::ReadLittleEndian64Fallback(uint64* value) {
- uint8 bytes[sizeof(*value)];
-
- const uint8* ptr;
- if (BufferSize() >= sizeof(*value)) {
- // Fast path: Enough bytes in the buffer to read directly.
- ptr = buffer_;
- Advance(sizeof(*value));
- } else {
- // Slow path: Had to read past the end of the buffer.
- if (!ReadRaw(bytes, sizeof(*value))) return false;
- ptr = bytes;
- }
- ReadLittleEndian64FromArray(ptr, value);
- return true;
- }
-
- namespace {
-
- // Decodes varint64 with known size, N, and returns next pointer. Knowing N at
- // compile time, compiler can generate optimal code. For example, instead of
- // subtracting 0x80 at each iteration, it subtracts properly shifted mask once.
- template <size_t N>
- const uint8* DecodeVarint64KnownSize(const uint8* buffer, uint64* value) {
- GOOGLE_DCHECK_GT(N, 0);
- uint64 result = static_cast<uint64>(buffer[N - 1]) << (7 * (N - 1));
- for (int i = 0, offset = 0; i < N - 1; i++, offset += 7) {
- result += static_cast<uint64>(buffer[i] - 0x80) << offset;
- }
- *value = result;
- return buffer + N;
- }
-
- // Read a varint from the given buffer, write it to *value, and return a pair.
- // The first part of the pair is true iff the read was successful. The second
- // part is buffer + (number of bytes read). This function is always inlined,
- // so returning a pair is costless.
- PROTOBUF_ALWAYS_INLINE
- ::std::pair<bool, const uint8*> ReadVarint32FromArray(uint32 first_byte,
- const uint8* buffer,
- uint32* value);
- inline ::std::pair<bool, const uint8*> ReadVarint32FromArray(
- uint32 first_byte, const uint8* buffer, uint32* value) {
- // Fast path: We have enough bytes left in the buffer to guarantee that
- // this read won't cross the end, so we can skip the checks.
- GOOGLE_DCHECK_EQ(*buffer, first_byte);
- GOOGLE_DCHECK_EQ(first_byte & 0x80, 0x80) << first_byte;
- const uint8* ptr = buffer;
- uint32 b;
- uint32 result = first_byte - 0x80;
- ++ptr; // We just processed the first byte. Move on to the second.
- b = *(ptr++);
- result += b << 7;
- if (!(b & 0x80)) goto done;
- result -= 0x80 << 7;
- b = *(ptr++);
- result += b << 14;
- if (!(b & 0x80)) goto done;
- result -= 0x80 << 14;
- b = *(ptr++);
- result += b << 21;
- if (!(b & 0x80)) goto done;
- result -= 0x80 << 21;
- b = *(ptr++);
- result += b << 28;
- if (!(b & 0x80)) goto done;
- // "result -= 0x80 << 28" is irrevelant.
-
- // If the input is larger than 32 bits, we still need to read it all
- // and discard the high-order bits.
- for (int i = 0; i < kMaxVarintBytes - kMaxVarint32Bytes; i++) {
- b = *(ptr++);
- if (!(b & 0x80)) goto done;
- }
-
- // We have overrun the maximum size of a varint (10 bytes). Assume
- // the data is corrupt.
- return std::make_pair(false, ptr);
-
- done:
- *value = result;
- return std::make_pair(true, ptr);
- }
-
- PROTOBUF_ALWAYS_INLINE::std::pair<bool, const uint8*> ReadVarint64FromArray(
- const uint8* buffer, uint64* value);
- inline ::std::pair<bool, const uint8*> ReadVarint64FromArray(
- const uint8* buffer, uint64* value) {
- // Assumes varint64 is at least 2 bytes.
- GOOGLE_DCHECK_GE(buffer[0], 128);
-
- const uint8* next;
- if (buffer[1] < 128) {
- next = DecodeVarint64KnownSize<2>(buffer, value);
- } else if (buffer[2] < 128) {
- next = DecodeVarint64KnownSize<3>(buffer, value);
- } else if (buffer[3] < 128) {
- next = DecodeVarint64KnownSize<4>(buffer, value);
- } else if (buffer[4] < 128) {
- next = DecodeVarint64KnownSize<5>(buffer, value);
- } else if (buffer[5] < 128) {
- next = DecodeVarint64KnownSize<6>(buffer, value);
- } else if (buffer[6] < 128) {
- next = DecodeVarint64KnownSize<7>(buffer, value);
- } else if (buffer[7] < 128) {
- next = DecodeVarint64KnownSize<8>(buffer, value);
- } else if (buffer[8] < 128) {
- next = DecodeVarint64KnownSize<9>(buffer, value);
- } else if (buffer[9] < 128) {
- next = DecodeVarint64KnownSize<10>(buffer, value);
- } else {
- // We have overrun the maximum size of a varint (10 bytes). Assume
- // the data is corrupt.
- return std::make_pair(false, buffer + 11);
- }
-
- return std::make_pair(true, next);
- }
-
- } // namespace
-
- bool CodedInputStream::ReadVarint32Slow(uint32* value) {
- // Directly invoke ReadVarint64Fallback, since we already tried to optimize
- // for one-byte varints.
- std::pair<uint64, bool> p = ReadVarint64Fallback();
- *value = static_cast<uint32>(p.first);
- return p.second;
- }
-
- int64 CodedInputStream::ReadVarint32Fallback(uint32 first_byte_or_zero) {
- if (BufferSize() >= kMaxVarintBytes ||
- // Optimization: We're also safe if the buffer is non-empty and it ends
- // with a byte that would terminate a varint.
- (buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
- GOOGLE_DCHECK_NE(first_byte_or_zero, 0)
- << "Caller should provide us with *buffer_ when buffer is non-empty";
- uint32 temp;
- ::std::pair<bool, const uint8*> p =
- ReadVarint32FromArray(first_byte_or_zero, buffer_, &temp);
- if (!p.first) return -1;
- buffer_ = p.second;
- return temp;
- } else {
- // Really slow case: we will incur the cost of an extra function call here,
- // but moving this out of line reduces the size of this function, which
- // improves the common case. In micro benchmarks, this is worth about 10-15%
- uint32 temp;
- return ReadVarint32Slow(&temp) ? static_cast<int64>(temp) : -1;
- }
- }
-
- int CodedInputStream::ReadVarintSizeAsIntSlow() {
- // Directly invoke ReadVarint64Fallback, since we already tried to optimize
- // for one-byte varints.
- std::pair<uint64, bool> p = ReadVarint64Fallback();
- if (!p.second || p.first > static_cast<uint64>(INT_MAX)) return -1;
- return p.first;
- }
-
- int CodedInputStream::ReadVarintSizeAsIntFallback() {
- if (BufferSize() >= kMaxVarintBytes ||
- // Optimization: We're also safe if the buffer is non-empty and it ends
- // with a byte that would terminate a varint.
- (buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
- uint64 temp;
- ::std::pair<bool, const uint8*> p = ReadVarint64FromArray(buffer_, &temp);
- if (!p.first || temp > static_cast<uint64>(INT_MAX)) return -1;
- buffer_ = p.second;
- return temp;
- } else {
- // Really slow case: we will incur the cost of an extra function call here,
- // but moving this out of line reduces the size of this function, which
- // improves the common case. In micro benchmarks, this is worth about 10-15%
- return ReadVarintSizeAsIntSlow();
- }
- }
-
- uint32 CodedInputStream::ReadTagSlow() {
- if (buffer_ == buffer_end_) {
- // Call refresh.
- if (!Refresh()) {
- // Refresh failed. Make sure that it failed due to EOF, not because
- // we hit total_bytes_limit_, which, unlike normal limits, is not a
- // valid place to end a message.
- int current_position = total_bytes_read_ - buffer_size_after_limit_;
- if (current_position >= total_bytes_limit_) {
- // Hit total_bytes_limit_. But if we also hit the normal limit,
- // we're still OK.
- legitimate_message_end_ = current_limit_ == total_bytes_limit_;
- } else {
- legitimate_message_end_ = true;
- }
- return 0;
- }
- }
-
- // For the slow path, just do a 64-bit read. Try to optimize for one-byte tags
- // again, since we have now refreshed the buffer.
- uint64 result = 0;
- if (!ReadVarint64(&result)) return 0;
- return static_cast<uint32>(result);
- }
-
- uint32 CodedInputStream::ReadTagFallback(uint32 first_byte_or_zero) {
- const int buf_size = BufferSize();
- if (buf_size >= kMaxVarintBytes ||
- // Optimization: We're also safe if the buffer is non-empty and it ends
- // with a byte that would terminate a varint.
- (buf_size > 0 && !(buffer_end_[-1] & 0x80))) {
- GOOGLE_DCHECK_EQ(first_byte_or_zero, buffer_[0]);
- if (first_byte_or_zero == 0) {
- ++buffer_;
- return 0;
- }
- uint32 tag;
- ::std::pair<bool, const uint8*> p =
- ReadVarint32FromArray(first_byte_or_zero, buffer_, &tag);
- if (!p.first) {
- return 0;
- }
- buffer_ = p.second;
- return tag;
- } else {
- // We are commonly at a limit when attempting to read tags. Try to quickly
- // detect this case without making another function call.
- if ((buf_size == 0) &&
- ((buffer_size_after_limit_ > 0) ||
- (total_bytes_read_ == current_limit_)) &&
- // Make sure that the limit we hit is not total_bytes_limit_, since
- // in that case we still need to call Refresh() so that it prints an
- // error.
- total_bytes_read_ - buffer_size_after_limit_ < total_bytes_limit_) {
- // We hit a byte limit.
- legitimate_message_end_ = true;
- return 0;
- }
- return ReadTagSlow();
- }
- }
-
- bool CodedInputStream::ReadVarint64Slow(uint64* value) {
- // Slow path: This read might cross the end of the buffer, so we
- // need to check and refresh the buffer if and when it does.
-
- uint64 result = 0;
- int count = 0;
- uint32 b;
-
- do {
- if (count == kMaxVarintBytes) {
- *value = 0;
- return false;
- }
- while (buffer_ == buffer_end_) {
- if (!Refresh()) {
- *value = 0;
- return false;
- }
- }
- b = *buffer_;
- result |= static_cast<uint64>(b & 0x7F) << (7 * count);
- Advance(1);
- ++count;
- } while (b & 0x80);
-
- *value = result;
- return true;
- }
-
- std::pair<uint64, bool> CodedInputStream::ReadVarint64Fallback() {
- if (BufferSize() >= kMaxVarintBytes ||
- // Optimization: We're also safe if the buffer is non-empty and it ends
- // with a byte that would terminate a varint.
- (buffer_end_ > buffer_ && !(buffer_end_[-1] & 0x80))) {
- uint64 temp;
- ::std::pair<bool, const uint8*> p = ReadVarint64FromArray(buffer_, &temp);
- if (!p.first) {
- return std::make_pair(0, false);
- }
- buffer_ = p.second;
- return std::make_pair(temp, true);
- } else {
- uint64 temp;
- bool success = ReadVarint64Slow(&temp);
- return std::make_pair(temp, success);
- }
- }
-
- bool CodedInputStream::Refresh() {
- GOOGLE_DCHECK_EQ(0, BufferSize());
-
- if (buffer_size_after_limit_ > 0 || overflow_bytes_ > 0 ||
- total_bytes_read_ == current_limit_) {
- // We've hit a limit. Stop.
- int current_position = total_bytes_read_ - buffer_size_after_limit_;
-
- if (current_position >= total_bytes_limit_ &&
- total_bytes_limit_ != current_limit_) {
- // Hit total_bytes_limit_.
- PrintTotalBytesLimitError();
- }
-
- return false;
- }
-
- const void* void_buffer;
- int buffer_size;
- if (NextNonEmpty(input_, &void_buffer, &buffer_size)) {
- buffer_ = reinterpret_cast<const uint8*>(void_buffer);
- buffer_end_ = buffer_ + buffer_size;
- GOOGLE_CHECK_GE(buffer_size, 0);
-
- if (total_bytes_read_ <= INT_MAX - buffer_size) {
- total_bytes_read_ += buffer_size;
- } else {
- // Overflow. Reset buffer_end_ to not include the bytes beyond INT_MAX.
- // We can't get that far anyway, because total_bytes_limit_ is guaranteed
- // to be less than it. We need to keep track of the number of bytes
- // we discarded, though, so that we can call input_->BackUp() to back
- // up over them on destruction.
-
- // The following line is equivalent to:
- // overflow_bytes_ = total_bytes_read_ + buffer_size - INT_MAX;
- // except that it avoids overflows. Signed integer overflow has
- // undefined results according to the C standard.
- overflow_bytes_ = total_bytes_read_ - (INT_MAX - buffer_size);
- buffer_end_ -= overflow_bytes_;
- total_bytes_read_ = INT_MAX;
- }
-
- RecomputeBufferLimits();
- return true;
- } else {
- buffer_ = NULL;
- buffer_end_ = NULL;
- return false;
- }
- }
-
- // CodedOutputStream =================================================
-
- void EpsCopyOutputStream::EnableAliasing(bool enabled) {
- aliasing_enabled_ = enabled && stream_->AllowsAliasing();
- }
-
- int64 EpsCopyOutputStream::ByteCount(uint8* ptr) const {
- // Calculate the current offset relative to the end of the stream buffer.
- int delta = (end_ - ptr) + (buffer_end_ ? 0 : kSlopBytes);
- return stream_->ByteCount() - delta;
- }
-
- // Flushes what's written out to the underlying ZeroCopyOutputStream buffers.
- // Returns the size remaining in the buffer and sets buffer_end_ to the start
- // of the remaining buffer, ie. [buffer_end_, buffer_end_ + return value)
- int EpsCopyOutputStream::Flush(uint8* ptr) {
- while (buffer_end_ && ptr > end_) {
- int overrun = ptr - end_;
- GOOGLE_DCHECK(!had_error_);
- GOOGLE_DCHECK(overrun <= kSlopBytes); // NOLINT
- ptr = Next() + overrun;
- if (had_error_) return 0;
- }
- int s;
- if (buffer_end_) {
- std::memcpy(buffer_end_, buffer_, ptr - buffer_);
- buffer_end_ += ptr - buffer_;
- s = end_ - ptr;
- } else {
- // The stream is writing directly in the ZeroCopyOutputStream buffer.
- s = end_ + kSlopBytes - ptr;
- buffer_end_ = ptr;
- }
- GOOGLE_DCHECK(s >= 0); // NOLINT
- return s;
- }
-
- uint8* EpsCopyOutputStream::Trim(uint8* ptr) {
- if (had_error_) return ptr;
- int s = Flush(ptr);
- if (s) stream_->BackUp(s);
- // Reset to initial state (expecting new buffer)
- buffer_end_ = end_ = buffer_;
- return buffer_;
- }
-
-
- uint8* EpsCopyOutputStream::FlushAndResetBuffer(uint8* ptr) {
- if (had_error_) return buffer_;
- int s = Flush(ptr);
- if (had_error_) return buffer_;
- return SetInitialBuffer(buffer_end_, s);
- }
-
- bool EpsCopyOutputStream::Skip(int count, uint8** pp) {
- if (count < 0) return false;
- if (had_error_) {
- *pp = buffer_;
- return false;
- }
- int size = Flush(*pp);
- if (had_error_) {
- *pp = buffer_;
- return false;
- }
- void* data = buffer_end_;
- while (count > size) {
- count -= size;
- if (!stream_->Next(&data, &size)) {
- *pp = Error();
- return false;
- }
- }
- *pp = SetInitialBuffer(static_cast<uint8*>(data) + count, size - count);
- return true;
- }
-
- bool EpsCopyOutputStream::GetDirectBufferPointer(void** data, int* size,
- uint8** pp) {
- if (had_error_) {
- *pp = buffer_;
- return false;
- }
- *size = Flush(*pp);
- if (had_error_) {
- *pp = buffer_;
- return false;
- }
- *data = buffer_end_;
- while (*size == 0) {
- if (!stream_->Next(data, size)) {
- *pp = Error();
- return false;
- }
- }
- *pp = SetInitialBuffer(*data, *size);
- return true;
- }
-
- uint8* EpsCopyOutputStream::GetDirectBufferForNBytesAndAdvance(int size,
- uint8** pp) {
- if (had_error_) {
- *pp = buffer_;
- return nullptr;
- }
- int s = Flush(*pp);
- if (had_error_) {
- *pp = buffer_;
- return nullptr;
- }
- if (s >= size) {
- auto res = buffer_end_;
- *pp = SetInitialBuffer(buffer_end_ + size, s - size);
- return res;
- } else {
- *pp = SetInitialBuffer(buffer_end_, s);
- return nullptr;
- }
- }
-
- uint8* EpsCopyOutputStream::Next() {
- GOOGLE_DCHECK(!had_error_); // NOLINT
- if (PROTOBUF_PREDICT_FALSE(stream_ == nullptr)) return Error();
- if (buffer_end_) {
- // We're in the patch buffer and need to fill up the previous buffer.
- std::memcpy(buffer_end_, buffer_, end_ - buffer_);
- uint8* ptr;
- int size;
- do {
- void* data;
- if (PROTOBUF_PREDICT_FALSE(!stream_->Next(&data, &size))) {
- // Stream has an error, we use the patch buffer to continue to be
- // able to write.
- return Error();
- }
- ptr = static_cast<uint8*>(data);
- } while (size == 0);
- if (PROTOBUF_PREDICT_TRUE(size > kSlopBytes)) {
- std::memcpy(ptr, end_, kSlopBytes);
- end_ = ptr + size - kSlopBytes;
- buffer_end_ = nullptr;
- return ptr;
- } else {
- GOOGLE_DCHECK(size > 0); // NOLINT
- // Buffer to small
- std::memmove(buffer_, end_, kSlopBytes);
- buffer_end_ = ptr;
- end_ = buffer_ + size;
- return buffer_;
- }
- } else {
- std::memcpy(buffer_, end_, kSlopBytes);
- buffer_end_ = end_;
- end_ = buffer_ + kSlopBytes;
- return buffer_;
- }
- }
-
- uint8* EpsCopyOutputStream::EnsureSpaceFallback(uint8* ptr) {
- do {
- if (PROTOBUF_PREDICT_FALSE(had_error_)) return buffer_;
- int overrun = ptr - end_;
- GOOGLE_DCHECK(overrun >= 0); // NOLINT
- GOOGLE_DCHECK(overrun <= kSlopBytes); // NOLINT
- ptr = Next() + overrun;
- } while (ptr >= end_);
- GOOGLE_DCHECK(ptr < end_); // NOLINT
- return ptr;
- }
-
- uint8* EpsCopyOutputStream::WriteRawFallback(const void* data, int size,
- uint8* ptr) {
- int s = GetSize(ptr);
- while (s < size) {
- std::memcpy(ptr, data, s);
- size -= s;
- data = static_cast<const uint8*>(data) + s;
- ptr = EnsureSpaceFallback(ptr + s);
- s = GetSize(ptr);
- }
- std::memcpy(ptr, data, size);
- return ptr + size;
- }
-
- uint8* EpsCopyOutputStream::WriteAliasedRaw(const void* data, int size,
- uint8* ptr) {
- if (size < GetSize(ptr)
- ) {
- return WriteRaw(data, size, ptr);
- } else {
- ptr = Trim(ptr);
- if (stream_->WriteAliasedRaw(data, size)) return ptr;
- return Error();
- }
- }
-
- #ifndef PROTOBUF_LITTLE_ENDIAN
- uint8* EpsCopyOutputStream::WriteRawLittleEndian32(const void* data, int size,
- uint8* ptr) {
- auto p = static_cast<const uint8*>(data);
- auto end = p + size;
- while (end - p >= kSlopBytes) {
- ptr = EnsureSpace(ptr);
- uint32 buffer[4];
- static_assert(sizeof(buffer) == kSlopBytes, "Buffer must be kSlopBytes");
- std::memcpy(buffer, p, kSlopBytes);
- p += kSlopBytes;
- for (auto x : buffer)
- ptr = CodedOutputStream::WriteLittleEndian32ToArray(x, ptr);
- }
- while (p < end) {
- ptr = EnsureSpace(ptr);
- uint32 buffer;
- std::memcpy(&buffer, p, 4);
- p += 4;
- ptr = CodedOutputStream::WriteLittleEndian32ToArray(buffer, ptr);
- }
- return ptr;
- }
-
- uint8* EpsCopyOutputStream::WriteRawLittleEndian64(const void* data, int size,
- uint8* ptr) {
- auto p = static_cast<const uint8*>(data);
- auto end = p + size;
- while (end - p >= kSlopBytes) {
- ptr = EnsureSpace(ptr);
- uint64 buffer[2];
- static_assert(sizeof(buffer) == kSlopBytes, "Buffer must be kSlopBytes");
- std::memcpy(buffer, p, kSlopBytes);
- p += kSlopBytes;
- for (auto x : buffer)
- ptr = CodedOutputStream::WriteLittleEndian64ToArray(x, ptr);
- }
- while (p < end) {
- ptr = EnsureSpace(ptr);
- uint64 buffer;
- std::memcpy(&buffer, p, 8);
- p += 8;
- ptr = CodedOutputStream::WriteLittleEndian64ToArray(buffer, ptr);
- }
- return ptr;
- }
- #endif
-
-
- uint8* EpsCopyOutputStream::WriteStringMaybeAliasedOutline(uint32 num,
- const std::string& s,
- uint8* ptr) {
- ptr = EnsureSpace(ptr);
- uint32 size = s.size();
- ptr = WriteLengthDelim(num, size, ptr);
- return WriteRawMaybeAliased(s.data(), size, ptr);
- }
-
- uint8* EpsCopyOutputStream::WriteStringOutline(uint32 num, const std::string& s,
- uint8* ptr) {
- ptr = EnsureSpace(ptr);
- uint32 size = s.size();
- ptr = WriteLengthDelim(num, size, ptr);
- return WriteRaw(s.data(), size, ptr);
- }
-
- std::atomic<bool> CodedOutputStream::default_serialization_deterministic_{
- false};
-
- CodedOutputStream::CodedOutputStream(ZeroCopyOutputStream* stream,
- bool do_eager_refresh)
- : impl_(stream, IsDefaultSerializationDeterministic(), &cur_),
- start_count_(stream->ByteCount()) {
- if (do_eager_refresh) {
- void* data;
- int size;
- if (!stream->Next(&data, &size) || size == 0) return;
- cur_ = impl_.SetInitialBuffer(data, size);
- }
- }
-
- CodedOutputStream::~CodedOutputStream() { Trim(); }
-
-
- uint8* CodedOutputStream::WriteStringWithSizeToArray(const std::string& str,
- uint8* target) {
- GOOGLE_DCHECK_LE(str.size(), kuint32max);
- target = WriteVarint32ToArray(str.size(), target);
- return WriteStringToArray(str, target);
- }
-
- } // namespace io
- } // namespace protobuf
- } // namespace google
|