|
- // Protocol Buffers - Google's data interchange format
- // Copyright 2008 Google Inc. All rights reserved.
- // https://developers.google.com/protocol-buffers/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived from
- // this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- // This file defines the map container and its helpers to support protobuf maps.
- //
- // The Map and MapIterator types are provided by this header file.
- // Please avoid using other types defined here, unless they are public
- // types within Map or MapIterator, such as Map::value_type.
-
- #ifndef GOOGLE_PROTOBUF_MAP_H__
- #define GOOGLE_PROTOBUF_MAP_H__
-
- #include <initializer_list>
- #include <iterator>
- #include <limits> // To support Visual Studio 2008
- #include <set>
- #include <utility>
-
- #include <google/protobuf/stubs/common.h>
- #include <google/protobuf/arena.h>
- #include <google/protobuf/generated_enum_util.h>
- #include <google/protobuf/map_type_handler.h>
- #include <google/protobuf/stubs/hash.h>
-
- #ifdef SWIG
- #error "You cannot SWIG proto headers"
- #endif
-
- #include <google/protobuf/port_def.inc>
-
- namespace google {
- namespace protobuf {
-
- template <typename Key, typename T>
- class Map;
-
- class MapIterator;
-
- template <typename Enum>
- struct is_proto_enum;
-
- namespace internal {
- template <typename Derived, typename Key, typename T,
- WireFormatLite::FieldType key_wire_type,
- WireFormatLite::FieldType value_wire_type, int default_enum_value>
- class MapFieldLite;
-
- template <typename Derived, typename Key, typename T,
- WireFormatLite::FieldType key_wire_type,
- WireFormatLite::FieldType value_wire_type, int default_enum_value>
- class MapField;
-
- template <typename Key, typename T>
- class TypeDefinedMapFieldBase;
-
- class DynamicMapField;
-
- class GeneratedMessageReflection;
- } // namespace internal
-
- // This is the class for Map's internal value_type. Instead of using
- // std::pair as value_type, we use this class which provides us more control of
- // its process of construction and destruction.
- template <typename Key, typename T>
- class MapPair {
- public:
- typedef const Key first_type;
- typedef T second_type;
-
- MapPair(const Key& other_first, const T& other_second)
- : first(other_first), second(other_second) {}
- explicit MapPair(const Key& other_first) : first(other_first), second() {}
- MapPair(const MapPair& other) : first(other.first), second(other.second) {}
-
- ~MapPair() {}
-
- // Implicitly convertible to std::pair of compatible types.
- template <typename T1, typename T2>
- operator std::pair<T1, T2>() const {
- return std::pair<T1, T2>(first, second);
- }
-
- const Key first;
- T second;
-
- private:
- friend class Arena;
- friend class Map<Key, T>;
- };
-
- // Map is an associative container type used to store protobuf map
- // fields. Each Map instance may or may not use a different hash function, a
- // different iteration order, and so on. E.g., please don't examine
- // implementation details to decide if the following would work:
- // Map<int, int> m0, m1;
- // m0[0] = m1[0] = m0[1] = m1[1] = 0;
- // assert(m0.begin()->first == m1.begin()->first); // Bug!
- //
- // Map's interface is similar to std::unordered_map, except that Map is not
- // designed to play well with exceptions.
- template <typename Key, typename T>
- class Map {
- public:
- typedef Key key_type;
- typedef T mapped_type;
- typedef MapPair<Key, T> value_type;
-
- typedef value_type* pointer;
- typedef const value_type* const_pointer;
- typedef value_type& reference;
- typedef const value_type& const_reference;
-
- typedef size_t size_type;
- typedef hash<Key> hasher;
-
- Map() : arena_(NULL), default_enum_value_(0) { Init(); }
- explicit Map(Arena* arena) : arena_(arena), default_enum_value_(0) { Init(); }
-
- Map(const Map& other)
- : arena_(NULL), default_enum_value_(other.default_enum_value_) {
- Init();
- insert(other.begin(), other.end());
- }
-
- Map(Map&& other) noexcept : Map() {
- if (other.arena_) {
- *this = other;
- } else {
- swap(other);
- }
- }
- Map& operator=(Map&& other) noexcept {
- if (this != &other) {
- if (arena_ != other.arena_) {
- *this = other;
- } else {
- swap(other);
- }
- }
- return *this;
- }
-
- template <class InputIt>
- Map(const InputIt& first, const InputIt& last)
- : arena_(NULL), default_enum_value_(0) {
- Init();
- insert(first, last);
- }
-
- ~Map() {
- clear();
- if (arena_ == NULL) {
- delete elements_;
- }
- }
-
- private:
- void Init() {
- elements_ =
- Arena::Create<InnerMap>(arena_, 0u, hasher(), Allocator(arena_));
- }
-
- // re-implement std::allocator to use arena allocator for memory allocation.
- // Used for Map implementation. Users should not use this class
- // directly.
- template <typename U>
- class MapAllocator {
- public:
- typedef U value_type;
- typedef value_type* pointer;
- typedef const value_type* const_pointer;
- typedef value_type& reference;
- typedef const value_type& const_reference;
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
-
- MapAllocator() : arena_(NULL) {}
- explicit MapAllocator(Arena* arena) : arena_(arena) {}
- template <typename X>
- MapAllocator(const MapAllocator<X>& allocator)
- : arena_(allocator.arena()) {}
-
- pointer allocate(size_type n, const void* /* hint */ = 0) {
- // If arena is not given, malloc needs to be called which doesn't
- // construct element object.
- if (arena_ == NULL) {
- return static_cast<pointer>(::operator new(n * sizeof(value_type)));
- } else {
- return reinterpret_cast<pointer>(
- Arena::CreateArray<uint8>(arena_, n * sizeof(value_type)));
- }
- }
-
- void deallocate(pointer p, size_type n) {
- if (arena_ == NULL) {
- #if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation)
- ::operator delete(p, n * sizeof(value_type));
- #else
- (void)n;
- ::operator delete(p);
- #endif
- }
- }
-
- #if __cplusplus >= 201103L && !defined(GOOGLE_PROTOBUF_OS_APPLE) && \
- !defined(GOOGLE_PROTOBUF_OS_NACL) && \
- !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN)
- template <class NodeType, class... Args>
- void construct(NodeType* p, Args&&... args) {
- // Clang 3.6 doesn't compile static casting to void* directly. (Issue
- // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall
- // not cast away constness". So first the maybe const pointer is casted to
- // const void* and after the const void* is const casted.
- new (const_cast<void*>(static_cast<const void*>(p)))
- NodeType(std::forward<Args>(args)...);
- }
-
- template <class NodeType>
- void destroy(NodeType* p) {
- p->~NodeType();
- }
- #else
- void construct(pointer p, const_reference t) { new (p) value_type(t); }
-
- void destroy(pointer p) { p->~value_type(); }
- #endif
-
- template <typename X>
- struct rebind {
- typedef MapAllocator<X> other;
- };
-
- template <typename X>
- bool operator==(const MapAllocator<X>& other) const {
- return arena_ == other.arena_;
- }
-
- template <typename X>
- bool operator!=(const MapAllocator<X>& other) const {
- return arena_ != other.arena_;
- }
-
- // To support Visual Studio 2008
- size_type max_size() const {
- // parentheses around (std::...:max) prevents macro warning of max()
- return (std::numeric_limits<size_type>::max)();
- }
-
- // To support gcc-4.4, which does not properly
- // support templated friend classes
- Arena* arena() const { return arena_; }
-
- private:
- typedef void DestructorSkippable_;
- Arena* const arena_;
- };
-
- // InnerMap's key type is Key and its value type is value_type*. We use a
- // custom class here and for Node, below, to ensure that k_ is at offset 0,
- // allowing safe conversion from pointer to Node to pointer to Key, and vice
- // versa when appropriate.
- class KeyValuePair {
- public:
- KeyValuePair(const Key& k, value_type* v) : k_(k), v_(v) {}
-
- const Key& key() const { return k_; }
- Key& key() { return k_; }
- value_type* value() const { return v_; }
- value_type*& value() { return v_; }
-
- private:
- Key k_;
- value_type* v_;
- };
-
- typedef MapAllocator<KeyValuePair> Allocator;
-
- // InnerMap is a generic hash-based map. It doesn't contain any
- // protocol-buffer-specific logic. It is a chaining hash map with the
- // additional feature that some buckets can be converted to use an ordered
- // container. This ensures O(lg n) bounds on find, insert, and erase, while
- // avoiding the overheads of ordered containers most of the time.
- //
- // The implementation doesn't need the full generality of unordered_map,
- // and it doesn't have it. More bells and whistles can be added as needed.
- // Some implementation details:
- // 1. The hash function has type hasher and the equality function
- // equal_to<Key>. We inherit from hasher to save space
- // (empty-base-class optimization).
- // 2. The number of buckets is a power of two.
- // 3. Buckets are converted to trees in pairs: if we convert bucket b then
- // buckets b and b^1 will share a tree. Invariant: buckets b and b^1 have
- // the same non-NULL value iff they are sharing a tree. (An alternative
- // implementation strategy would be to have a tag bit per bucket.)
- // 4. As is typical for hash_map and such, the Keys and Values are always
- // stored in linked list nodes. Pointers to elements are never invalidated
- // until the element is deleted.
- // 5. The trees' payload type is pointer to linked-list node. Tree-converting
- // a bucket doesn't copy Key-Value pairs.
- // 6. Once we've tree-converted a bucket, it is never converted back. However,
- // the items a tree contains may wind up assigned to trees or lists upon a
- // rehash.
- // 7. The code requires no C++ features from C++11 or later.
- // 8. Mutations to a map do not invalidate the map's iterators, pointers to
- // elements, or references to elements.
- // 9. Except for erase(iterator), any non-const method can reorder iterators.
- class InnerMap : private hasher {
- public:
- typedef value_type* Value;
-
- InnerMap(size_type n, hasher h, Allocator alloc)
- : hasher(h),
- num_elements_(0),
- seed_(Seed()),
- table_(NULL),
- alloc_(alloc) {
- n = TableSize(n);
- table_ = CreateEmptyTable(n);
- num_buckets_ = index_of_first_non_null_ = n;
- }
-
- ~InnerMap() {
- if (table_ != NULL) {
- clear();
- Dealloc<void*>(table_, num_buckets_);
- }
- }
-
- private:
- enum { kMinTableSize = 8 };
-
- // Linked-list nodes, as one would expect for a chaining hash table.
- struct Node {
- KeyValuePair kv;
- Node* next;
- };
-
- // This is safe only if the given pointer is known to point to a Key that is
- // part of a Node.
- static Node* NodePtrFromKeyPtr(Key* k) {
- return reinterpret_cast<Node*>(k);
- }
-
- static Key* KeyPtrFromNodePtr(Node* node) { return &node->kv.key(); }
-
- // Trees. The payload type is pointer to Key, so that we can query the tree
- // with Keys that are not in any particular data structure. When we insert,
- // though, the pointer is always pointing to a Key that is inside a Node.
- struct KeyCompare {
- bool operator()(const Key* n0, const Key* n1) const { return *n0 < *n1; }
- };
- typedef typename Allocator::template rebind<Key*>::other KeyPtrAllocator;
- typedef std::set<Key*, KeyCompare, KeyPtrAllocator> Tree;
- typedef typename Tree::iterator TreeIterator;
-
- // iterator and const_iterator are instantiations of iterator_base.
- template <typename KeyValueType>
- struct iterator_base {
- typedef KeyValueType& reference;
- typedef KeyValueType* pointer;
-
- // Invariants:
- // node_ is always correct. This is handy because the most common
- // operations are operator* and operator-> and they only use node_.
- // When node_ is set to a non-NULL value, all the other non-const fields
- // are updated to be correct also, but those fields can become stale
- // if the underlying map is modified. When those fields are needed they
- // are rechecked, and updated if necessary.
- iterator_base() : node_(NULL), m_(NULL), bucket_index_(0) {}
-
- explicit iterator_base(const InnerMap* m) : m_(m) {
- SearchFrom(m->index_of_first_non_null_);
- }
-
- // Any iterator_base can convert to any other. This is overkill, and we
- // rely on the enclosing class to use it wisely. The standard "iterator
- // can convert to const_iterator" is OK but the reverse direction is not.
- template <typename U>
- explicit iterator_base(const iterator_base<U>& it)
- : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {}
-
- iterator_base(Node* n, const InnerMap* m, size_type index)
- : node_(n), m_(m), bucket_index_(index) {}
-
- iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index)
- : node_(NodePtrFromKeyPtr(*tree_it)), m_(m), bucket_index_(index) {
- // Invariant: iterators that use buckets with trees have an even
- // bucket_index_.
- GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u);
- }
-
- // Advance through buckets, looking for the first that isn't empty.
- // If nothing non-empty is found then leave node_ == NULL.
- void SearchFrom(size_type start_bucket) {
- GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ ||
- m_->table_[m_->index_of_first_non_null_] != NULL);
- node_ = NULL;
- for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_;
- bucket_index_++) {
- if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
- node_ = static_cast<Node*>(m_->table_[bucket_index_]);
- break;
- } else if (m_->TableEntryIsTree(bucket_index_)) {
- Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
- GOOGLE_DCHECK(!tree->empty());
- node_ = NodePtrFromKeyPtr(*tree->begin());
- break;
- }
- }
- }
-
- reference operator*() const { return node_->kv; }
- pointer operator->() const { return &(operator*()); }
-
- friend bool operator==(const iterator_base& a, const iterator_base& b) {
- return a.node_ == b.node_;
- }
- friend bool operator!=(const iterator_base& a, const iterator_base& b) {
- return a.node_ != b.node_;
- }
-
- iterator_base& operator++() {
- if (node_->next == NULL) {
- TreeIterator tree_it;
- const bool is_list = revalidate_if_necessary(&tree_it);
- if (is_list) {
- SearchFrom(bucket_index_ + 1);
- } else {
- GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u);
- Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]);
- if (++tree_it == tree->end()) {
- SearchFrom(bucket_index_ + 2);
- } else {
- node_ = NodePtrFromKeyPtr(*tree_it);
- }
- }
- } else {
- node_ = node_->next;
- }
- return *this;
- }
-
- iterator_base operator++(int /* unused */) {
- iterator_base tmp = *this;
- ++*this;
- return tmp;
- }
-
- // Assumes node_ and m_ are correct and non-NULL, but other fields may be
- // stale. Fix them as needed. Then return true iff node_ points to a
- // Node in a list. If false is returned then *it is modified to be
- // a valid iterator for node_.
- bool revalidate_if_necessary(TreeIterator* it) {
- GOOGLE_DCHECK(node_ != NULL && m_ != NULL);
- // Force bucket_index_ to be in range.
- bucket_index_ &= (m_->num_buckets_ - 1);
- // Common case: the bucket we think is relevant points to node_.
- if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true;
- // Less common: the bucket is a linked list with node_ somewhere in it,
- // but not at the head.
- if (m_->TableEntryIsNonEmptyList(bucket_index_)) {
- Node* l = static_cast<Node*>(m_->table_[bucket_index_]);
- while ((l = l->next) != NULL) {
- if (l == node_) {
- return true;
- }
- }
- }
- // Well, bucket_index_ still might be correct, but probably
- // not. Revalidate just to be sure. This case is rare enough that we
- // don't worry about potential optimizations, such as having a custom
- // find-like method that compares Node* instead of const Key&.
- iterator_base i(m_->find(*KeyPtrFromNodePtr(node_), it));
- bucket_index_ = i.bucket_index_;
- return m_->TableEntryIsList(bucket_index_);
- }
-
- Node* node_;
- const InnerMap* m_;
- size_type bucket_index_;
- };
-
- public:
- typedef iterator_base<KeyValuePair> iterator;
- typedef iterator_base<const KeyValuePair> const_iterator;
-
- iterator begin() { return iterator(this); }
- iterator end() { return iterator(); }
- const_iterator begin() const { return const_iterator(this); }
- const_iterator end() const { return const_iterator(); }
-
- void clear() {
- for (size_type b = 0; b < num_buckets_; b++) {
- if (TableEntryIsNonEmptyList(b)) {
- Node* node = static_cast<Node*>(table_[b]);
- table_[b] = NULL;
- do {
- Node* next = node->next;
- DestroyNode(node);
- node = next;
- } while (node != NULL);
- } else if (TableEntryIsTree(b)) {
- Tree* tree = static_cast<Tree*>(table_[b]);
- GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0);
- table_[b] = table_[b + 1] = NULL;
- typename Tree::iterator tree_it = tree->begin();
- do {
- Node* node = NodePtrFromKeyPtr(*tree_it);
- typename Tree::iterator next = tree_it;
- ++next;
- tree->erase(tree_it);
- DestroyNode(node);
- tree_it = next;
- } while (tree_it != tree->end());
- DestroyTree(tree);
- b++;
- }
- }
- num_elements_ = 0;
- index_of_first_non_null_ = num_buckets_;
- }
-
- const hasher& hash_function() const { return *this; }
-
- static size_type max_size() {
- return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28);
- }
- size_type size() const { return num_elements_; }
- bool empty() const { return size() == 0; }
-
- iterator find(const Key& k) { return iterator(FindHelper(k).first); }
- const_iterator find(const Key& k) const { return find(k, NULL); }
- bool contains(const Key& k) const { return find(k) != end(); }
-
- // In traditional C++ style, this performs "insert if not present."
- std::pair<iterator, bool> insert(const KeyValuePair& kv) {
- std::pair<const_iterator, size_type> p = FindHelper(kv.key());
- // Case 1: key was already present.
- if (p.first.node_ != NULL)
- return std::make_pair(iterator(p.first), false);
- // Case 2: insert.
- if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
- p = FindHelper(kv.key());
- }
- const size_type b = p.second; // bucket number
- Node* node = Alloc<Node>(1);
- alloc_.construct(&node->kv, kv);
- iterator result = InsertUnique(b, node);
- ++num_elements_;
- return std::make_pair(result, true);
- }
-
- // The same, but if an insertion is necessary then the value portion of the
- // inserted key-value pair is left uninitialized.
- std::pair<iterator, bool> insert(const Key& k) {
- std::pair<const_iterator, size_type> p = FindHelper(k);
- // Case 1: key was already present.
- if (p.first.node_ != NULL)
- return std::make_pair(iterator(p.first), false);
- // Case 2: insert.
- if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) {
- p = FindHelper(k);
- }
- const size_type b = p.second; // bucket number
- Node* node = Alloc<Node>(1);
- typedef typename Allocator::template rebind<Key>::other KeyAllocator;
- KeyAllocator(alloc_).construct(&node->kv.key(), k);
- iterator result = InsertUnique(b, node);
- ++num_elements_;
- return std::make_pair(result, true);
- }
-
- Value& operator[](const Key& k) {
- KeyValuePair kv(k, Value());
- return insert(kv).first->value();
- }
-
- void erase(iterator it) {
- GOOGLE_DCHECK_EQ(it.m_, this);
- typename Tree::iterator tree_it;
- const bool is_list = it.revalidate_if_necessary(&tree_it);
- size_type b = it.bucket_index_;
- Node* const item = it.node_;
- if (is_list) {
- GOOGLE_DCHECK(TableEntryIsNonEmptyList(b));
- Node* head = static_cast<Node*>(table_[b]);
- head = EraseFromLinkedList(item, head);
- table_[b] = static_cast<void*>(head);
- } else {
- GOOGLE_DCHECK(TableEntryIsTree(b));
- Tree* tree = static_cast<Tree*>(table_[b]);
- tree->erase(*tree_it);
- if (tree->empty()) {
- // Force b to be the minimum of b and b ^ 1. This is important
- // only because we want index_of_first_non_null_ to be correct.
- b &= ~static_cast<size_type>(1);
- DestroyTree(tree);
- table_[b] = table_[b + 1] = NULL;
- }
- }
- DestroyNode(item);
- --num_elements_;
- if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) {
- while (index_of_first_non_null_ < num_buckets_ &&
- table_[index_of_first_non_null_] == NULL) {
- ++index_of_first_non_null_;
- }
- }
- }
-
- private:
- const_iterator find(const Key& k, TreeIterator* it) const {
- return FindHelper(k, it).first;
- }
- std::pair<const_iterator, size_type> FindHelper(const Key& k) const {
- return FindHelper(k, NULL);
- }
- std::pair<const_iterator, size_type> FindHelper(const Key& k,
- TreeIterator* it) const {
- size_type b = BucketNumber(k);
- if (TableEntryIsNonEmptyList(b)) {
- Node* node = static_cast<Node*>(table_[b]);
- do {
- if (IsMatch(*KeyPtrFromNodePtr(node), k)) {
- return std::make_pair(const_iterator(node, this, b), b);
- } else {
- node = node->next;
- }
- } while (node != NULL);
- } else if (TableEntryIsTree(b)) {
- GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
- b &= ~static_cast<size_t>(1);
- Tree* tree = static_cast<Tree*>(table_[b]);
- Key* key = const_cast<Key*>(&k);
- typename Tree::iterator tree_it = tree->find(key);
- if (tree_it != tree->end()) {
- if (it != NULL) *it = tree_it;
- return std::make_pair(const_iterator(tree_it, this, b), b);
- }
- }
- return std::make_pair(end(), b);
- }
-
- // Insert the given Node in bucket b. If that would make bucket b too big,
- // and bucket b is not a tree, create a tree for buckets b and b^1 to share.
- // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct
- // bucket. num_elements_ is not modified.
- iterator InsertUnique(size_type b, Node* node) {
- GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ ||
- table_[index_of_first_non_null_] != NULL);
- // In practice, the code that led to this point may have already
- // determined whether we are inserting into an empty list, a short list,
- // or whatever. But it's probably cheap enough to recompute that here;
- // it's likely that we're inserting into an empty or short list.
- iterator result;
- GOOGLE_DCHECK(find(*KeyPtrFromNodePtr(node)) == end());
- if (TableEntryIsEmpty(b)) {
- result = InsertUniqueInList(b, node);
- } else if (TableEntryIsNonEmptyList(b)) {
- if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) {
- TreeConvert(b);
- result = InsertUniqueInTree(b, node);
- GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1));
- } else {
- // Insert into a pre-existing list. This case cannot modify
- // index_of_first_non_null_, so we skip the code to update it.
- return InsertUniqueInList(b, node);
- }
- } else {
- // Insert into a pre-existing tree. This case cannot modify
- // index_of_first_non_null_, so we skip the code to update it.
- return InsertUniqueInTree(b, node);
- }
- // parentheses around (std::min) prevents macro expansion of min(...)
- index_of_first_non_null_ =
- (std::min)(index_of_first_non_null_, result.bucket_index_);
- return result;
- }
-
- // Helper for InsertUnique. Handles the case where bucket b is a
- // not-too-long linked list.
- iterator InsertUniqueInList(size_type b, Node* node) {
- node->next = static_cast<Node*>(table_[b]);
- table_[b] = static_cast<void*>(node);
- return iterator(node, this, b);
- }
-
- // Helper for InsertUnique. Handles the case where bucket b points to a
- // Tree.
- iterator InsertUniqueInTree(size_type b, Node* node) {
- GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]);
- // Maintain the invariant that node->next is NULL for all Nodes in Trees.
- node->next = NULL;
- return iterator(
- static_cast<Tree*>(table_[b])->insert(KeyPtrFromNodePtr(node)).first,
- this, b & ~static_cast<size_t>(1));
- }
-
- // Returns whether it did resize. Currently this is only used when
- // num_elements_ increases, though it could be used in other situations.
- // It checks for load too low as well as load too high: because any number
- // of erases can occur between inserts, the load could be as low as 0 here.
- // Resizing to a lower size is not always helpful, but failing to do so can
- // destroy the expected big-O bounds for some operations. By having the
- // policy that sometimes we resize down as well as up, clients can easily
- // keep O(size()) = O(number of buckets) if they want that.
- bool ResizeIfLoadIsOutOfRange(size_type new_size) {
- const size_type kMaxMapLoadTimes16 = 12; // controls RAM vs CPU tradeoff
- const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16;
- const size_type lo_cutoff = hi_cutoff / 4;
- // We don't care how many elements are in trees. If a lot are,
- // we may resize even though there are many empty buckets. In
- // practice, this seems fine.
- if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) {
- if (num_buckets_ <= max_size() / 2) {
- Resize(num_buckets_ * 2);
- return true;
- }
- } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff &&
- num_buckets_ > kMinTableSize)) {
- size_type lg2_of_size_reduction_factor = 1;
- // It's possible we want to shrink a lot here... size() could even be 0.
- // So, estimate how much to shrink by making sure we don't shrink so
- // much that we would need to grow the table after a few inserts.
- const size_type hypothetical_size = new_size * 5 / 4 + 1;
- while ((hypothetical_size << lg2_of_size_reduction_factor) <
- hi_cutoff) {
- ++lg2_of_size_reduction_factor;
- }
- size_type new_num_buckets = std::max<size_type>(
- kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor);
- if (new_num_buckets != num_buckets_) {
- Resize(new_num_buckets);
- return true;
- }
- }
- return false;
- }
-
- // Resize to the given number of buckets.
- void Resize(size_t new_num_buckets) {
- GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize);
- void** const old_table = table_;
- const size_type old_table_size = num_buckets_;
- num_buckets_ = new_num_buckets;
- table_ = CreateEmptyTable(num_buckets_);
- const size_type start = index_of_first_non_null_;
- index_of_first_non_null_ = num_buckets_;
- for (size_type i = start; i < old_table_size; i++) {
- if (TableEntryIsNonEmptyList(old_table, i)) {
- TransferList(old_table, i);
- } else if (TableEntryIsTree(old_table, i)) {
- TransferTree(old_table, i++);
- }
- }
- Dealloc<void*>(old_table, old_table_size);
- }
-
- void TransferList(void* const* table, size_type index) {
- Node* node = static_cast<Node*>(table[index]);
- do {
- Node* next = node->next;
- InsertUnique(BucketNumber(*KeyPtrFromNodePtr(node)), node);
- node = next;
- } while (node != NULL);
- }
-
- void TransferTree(void* const* table, size_type index) {
- Tree* tree = static_cast<Tree*>(table[index]);
- typename Tree::iterator tree_it = tree->begin();
- do {
- Node* node = NodePtrFromKeyPtr(*tree_it);
- InsertUnique(BucketNumber(**tree_it), node);
- } while (++tree_it != tree->end());
- DestroyTree(tree);
- }
-
- Node* EraseFromLinkedList(Node* item, Node* head) {
- if (head == item) {
- return head->next;
- } else {
- head->next = EraseFromLinkedList(item, head->next);
- return head;
- }
- }
-
- bool TableEntryIsEmpty(size_type b) const {
- return TableEntryIsEmpty(table_, b);
- }
- bool TableEntryIsNonEmptyList(size_type b) const {
- return TableEntryIsNonEmptyList(table_, b);
- }
- bool TableEntryIsTree(size_type b) const {
- return TableEntryIsTree(table_, b);
- }
- bool TableEntryIsList(size_type b) const {
- return TableEntryIsList(table_, b);
- }
- static bool TableEntryIsEmpty(void* const* table, size_type b) {
- return table[b] == NULL;
- }
- static bool TableEntryIsNonEmptyList(void* const* table, size_type b) {
- return table[b] != NULL && table[b] != table[b ^ 1];
- }
- static bool TableEntryIsTree(void* const* table, size_type b) {
- return !TableEntryIsEmpty(table, b) &&
- !TableEntryIsNonEmptyList(table, b);
- }
- static bool TableEntryIsList(void* const* table, size_type b) {
- return !TableEntryIsTree(table, b);
- }
-
- void TreeConvert(size_type b) {
- GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1));
- typename Allocator::template rebind<Tree>::other tree_allocator(alloc_);
- Tree* tree = tree_allocator.allocate(1);
- // We want to use the three-arg form of construct, if it exists, but we
- // create a temporary and use the two-arg construct that's known to exist.
- // It's clunky, but the compiler should be able to generate more-or-less
- // the same code.
- tree_allocator.construct(tree,
- Tree(KeyCompare(), KeyPtrAllocator(alloc_)));
- // Now the tree is ready to use.
- size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree);
- GOOGLE_DCHECK_EQ(count, tree->size());
- table_[b] = table_[b ^ 1] = static_cast<void*>(tree);
- }
-
- // Copy a linked list in the given bucket to a tree.
- // Returns the number of things it copied.
- size_type CopyListToTree(size_type b, Tree* tree) {
- size_type count = 0;
- Node* node = static_cast<Node*>(table_[b]);
- while (node != NULL) {
- tree->insert(KeyPtrFromNodePtr(node));
- ++count;
- Node* next = node->next;
- node->next = NULL;
- node = next;
- }
- return count;
- }
-
- // Return whether table_[b] is a linked list that seems awfully long.
- // Requires table_[b] to point to a non-empty linked list.
- bool TableEntryIsTooLong(size_type b) {
- const size_type kMaxLength = 8;
- size_type count = 0;
- Node* node = static_cast<Node*>(table_[b]);
- do {
- ++count;
- node = node->next;
- } while (node != NULL);
- // Invariant: no linked list ever is more than kMaxLength in length.
- GOOGLE_DCHECK_LE(count, kMaxLength);
- return count >= kMaxLength;
- }
-
- size_type BucketNumber(const Key& k) const {
- // We inherit from hasher, so one-arg operator() provides a hash function.
- size_type h = (*const_cast<InnerMap*>(this))(k);
- return (h + seed_) & (num_buckets_ - 1);
- }
-
- bool IsMatch(const Key& k0, const Key& k1) const {
- return std::equal_to<Key>()(k0, k1);
- }
-
- // Return a power of two no less than max(kMinTableSize, n).
- // Assumes either n < kMinTableSize or n is a power of two.
- size_type TableSize(size_type n) {
- return n < static_cast<size_type>(kMinTableSize)
- ? static_cast<size_type>(kMinTableSize)
- : n;
- }
-
- // Use alloc_ to allocate an array of n objects of type U.
- template <typename U>
- U* Alloc(size_type n) {
- typedef typename Allocator::template rebind<U>::other alloc_type;
- return alloc_type(alloc_).allocate(n);
- }
-
- // Use alloc_ to deallocate an array of n objects of type U.
- template <typename U>
- void Dealloc(U* t, size_type n) {
- typedef typename Allocator::template rebind<U>::other alloc_type;
- alloc_type(alloc_).deallocate(t, n);
- }
-
- void DestroyNode(Node* node) {
- alloc_.destroy(&node->kv);
- Dealloc<Node>(node, 1);
- }
-
- void DestroyTree(Tree* tree) {
- typename Allocator::template rebind<Tree>::other tree_allocator(alloc_);
- tree_allocator.destroy(tree);
- tree_allocator.deallocate(tree, 1);
- }
-
- void** CreateEmptyTable(size_type n) {
- GOOGLE_DCHECK(n >= kMinTableSize);
- GOOGLE_DCHECK_EQ(n & (n - 1), 0);
- void** result = Alloc<void*>(n);
- memset(result, 0, n * sizeof(result[0]));
- return result;
- }
-
- // Return a randomish value.
- size_type Seed() const {
- size_type s = static_cast<size_type>(reinterpret_cast<uintptr_t>(this));
- #if defined(__x86_64__) && defined(__GNUC__) && \
- !defined(GOOGLE_PROTOBUF_NO_RDTSC)
- uint32 hi, lo;
- asm("rdtsc" : "=a"(lo), "=d"(hi));
- s += ((static_cast<uint64>(hi) << 32) | lo);
- #endif
- return s;
- }
-
- size_type num_elements_;
- size_type num_buckets_;
- size_type seed_;
- size_type index_of_first_non_null_;
- void** table_; // an array with num_buckets_ entries
- Allocator alloc_;
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap);
- }; // end of class InnerMap
-
- public:
- // Iterators
- class const_iterator {
- typedef typename InnerMap::const_iterator InnerIt;
-
- public:
- typedef std::forward_iterator_tag iterator_category;
- typedef typename Map::value_type value_type;
- typedef ptrdiff_t difference_type;
- typedef const value_type* pointer;
- typedef const value_type& reference;
-
- const_iterator() {}
- explicit const_iterator(const InnerIt& it) : it_(it) {}
-
- const_reference operator*() const { return *it_->value(); }
- const_pointer operator->() const { return &(operator*()); }
-
- const_iterator& operator++() {
- ++it_;
- return *this;
- }
- const_iterator operator++(int) { return const_iterator(it_++); }
-
- friend bool operator==(const const_iterator& a, const const_iterator& b) {
- return a.it_ == b.it_;
- }
- friend bool operator!=(const const_iterator& a, const const_iterator& b) {
- return !(a == b);
- }
-
- private:
- InnerIt it_;
- };
-
- class iterator {
- typedef typename InnerMap::iterator InnerIt;
-
- public:
- typedef std::forward_iterator_tag iterator_category;
- typedef typename Map::value_type value_type;
- typedef ptrdiff_t difference_type;
- typedef value_type* pointer;
- typedef value_type& reference;
-
- iterator() {}
- explicit iterator(const InnerIt& it) : it_(it) {}
-
- reference operator*() const { return *it_->value(); }
- pointer operator->() const { return &(operator*()); }
-
- iterator& operator++() {
- ++it_;
- return *this;
- }
- iterator operator++(int) { return iterator(it_++); }
-
- // Allow implicit conversion to const_iterator.
- operator const_iterator() const {
- return const_iterator(typename InnerMap::const_iterator(it_));
- }
-
- friend bool operator==(const iterator& a, const iterator& b) {
- return a.it_ == b.it_;
- }
- friend bool operator!=(const iterator& a, const iterator& b) {
- return !(a == b);
- }
-
- private:
- friend class Map;
-
- InnerIt it_;
- };
-
- iterator begin() { return iterator(elements_->begin()); }
- iterator end() { return iterator(elements_->end()); }
- const_iterator begin() const {
- return const_iterator(iterator(elements_->begin()));
- }
- const_iterator end() const {
- return const_iterator(iterator(elements_->end()));
- }
- const_iterator cbegin() const { return begin(); }
- const_iterator cend() const { return end(); }
-
- // Capacity
- size_type size() const { return elements_->size(); }
- bool empty() const { return size() == 0; }
-
- // Element access
- T& operator[](const key_type& key) {
- value_type** value = &(*elements_)[key];
- if (*value == NULL) {
- *value = CreateValueTypeInternal(key);
- internal::MapValueInitializer<is_proto_enum<T>::value, T>::Initialize(
- (*value)->second, default_enum_value_);
- }
- return (*value)->second;
- }
- const T& at(const key_type& key) const {
- const_iterator it = find(key);
- GOOGLE_CHECK(it != end()) << "key not found: " << key;
- return it->second;
- }
- T& at(const key_type& key) {
- iterator it = find(key);
- GOOGLE_CHECK(it != end()) << "key not found: " << key;
- return it->second;
- }
-
- // Lookup
- size_type count(const key_type& key) const {
- const_iterator it = find(key);
- GOOGLE_DCHECK(it == end() || key == it->first);
- return it == end() ? 0 : 1;
- }
- const_iterator find(const key_type& key) const {
- return const_iterator(iterator(elements_->find(key)));
- }
- iterator find(const key_type& key) { return iterator(elements_->find(key)); }
- bool contains(const Key& key) const { return elements_->contains(key); }
- std::pair<const_iterator, const_iterator> equal_range(
- const key_type& key) const {
- const_iterator it = find(key);
- if (it == end()) {
- return std::pair<const_iterator, const_iterator>(it, it);
- } else {
- const_iterator begin = it++;
- return std::pair<const_iterator, const_iterator>(begin, it);
- }
- }
- std::pair<iterator, iterator> equal_range(const key_type& key) {
- iterator it = find(key);
- if (it == end()) {
- return std::pair<iterator, iterator>(it, it);
- } else {
- iterator begin = it++;
- return std::pair<iterator, iterator>(begin, it);
- }
- }
-
- // insert
- std::pair<iterator, bool> insert(const value_type& value) {
- std::pair<typename InnerMap::iterator, bool> p =
- elements_->insert(value.first);
- if (p.second) {
- p.first->value() = CreateValueTypeInternal(value);
- }
- return std::pair<iterator, bool>(iterator(p.first), p.second);
- }
- template <class InputIt>
- void insert(InputIt first, InputIt last) {
- for (InputIt it = first; it != last; ++it) {
- iterator exist_it = find(it->first);
- if (exist_it == end()) {
- operator[](it->first) = it->second;
- }
- }
- }
- void insert(std::initializer_list<value_type> values) {
- insert(values.begin(), values.end());
- }
-
- // Erase and clear
- size_type erase(const key_type& key) {
- iterator it = find(key);
- if (it == end()) {
- return 0;
- } else {
- erase(it);
- return 1;
- }
- }
- iterator erase(iterator pos) {
- if (arena_ == NULL) delete pos.operator->();
- iterator i = pos++;
- elements_->erase(i.it_);
- return pos;
- }
- void erase(iterator first, iterator last) {
- while (first != last) {
- first = erase(first);
- }
- }
- void clear() { erase(begin(), end()); }
-
- // Assign
- Map& operator=(const Map& other) {
- if (this != &other) {
- clear();
- insert(other.begin(), other.end());
- }
- return *this;
- }
-
- void swap(Map& other) {
- if (arena_ == other.arena_) {
- std::swap(default_enum_value_, other.default_enum_value_);
- std::swap(elements_, other.elements_);
- } else {
- // TODO(zuguang): optimize this. The temporary copy can be allocated
- // in the same arena as the other message, and the "other = copy" can
- // be replaced with the fast-path swap above.
- Map copy = *this;
- *this = other;
- other = copy;
- }
- }
-
- // Access to hasher. Currently this returns a copy, but it may
- // be modified to return a const reference in the future.
- hasher hash_function() const { return elements_->hash_function(); }
-
- private:
- // Set default enum value only for proto2 map field whose value is enum type.
- void SetDefaultEnumValue(int default_enum_value) {
- default_enum_value_ = default_enum_value;
- }
-
- value_type* CreateValueTypeInternal(const Key& key) {
- if (arena_ == NULL) {
- return new value_type(key);
- } else {
- value_type* value = reinterpret_cast<value_type*>(
- Arena::CreateArray<uint8>(arena_, sizeof(value_type)));
- Arena::CreateInArenaStorage(const_cast<Key*>(&value->first), arena_);
- Arena::CreateInArenaStorage(&value->second, arena_);
- const_cast<Key&>(value->first) = key;
- return value;
- }
- }
-
- value_type* CreateValueTypeInternal(const value_type& value) {
- if (arena_ == NULL) {
- return new value_type(value);
- } else {
- value_type* p = reinterpret_cast<value_type*>(
- Arena::CreateArray<uint8>(arena_, sizeof(value_type)));
- Arena::CreateInArenaStorage(const_cast<Key*>(&p->first), arena_);
- Arena::CreateInArenaStorage(&p->second, arena_);
- const_cast<Key&>(p->first) = value.first;
- p->second = value.second;
- return p;
- }
- }
-
- Arena* arena_;
- int default_enum_value_;
- InnerMap* elements_;
-
- friend class Arena;
- typedef void InternalArenaConstructable_;
- typedef void DestructorSkippable_;
- template <typename Derived, typename K, typename V,
- internal::WireFormatLite::FieldType key_wire_type,
- internal::WireFormatLite::FieldType value_wire_type,
- int default_enum_value>
- friend class internal::MapFieldLite;
- };
-
- } // namespace protobuf
- } // namespace google
-
- #include <google/protobuf/port_undef.inc>
-
- #endif // GOOGLE_PROTOBUF_MAP_H__
|