|
- // Protocol Buffers - Google's data interchange format
- // Copyright 2008 Google Inc. All rights reserved.
- // https://developers.google.com/protocol-buffers/
- //
- // Redistribution and use in source and binary forms, with or without
- // modification, are permitted provided that the following conditions are
- // met:
- //
- // * Redistributions of source code must retain the above copyright
- // notice, this list of conditions and the following disclaimer.
- // * Redistributions in binary form must reproduce the above
- // copyright notice, this list of conditions and the following disclaimer
- // in the documentation and/or other materials provided with the
- // distribution.
- // * Neither the name of Google Inc. nor the names of its
- // contributors may be used to endorse or promote products derived from
- // this software without specific prior written permission.
- //
- // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
- // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
- // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
- // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
- // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
- // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
- // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
- // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
- // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
- // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
- // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
- // Author: kenton@google.com (Kenton Varda)
- // Based on original Protocol Buffers design by
- // Sanjay Ghemawat, Jeff Dean, and others.
- //
- // Defines Message, the abstract interface implemented by non-lite
- // protocol message objects. Although it's possible to implement this
- // interface manually, most users will use the protocol compiler to
- // generate implementations.
- //
- // Example usage:
- //
- // Say you have a message defined as:
- //
- // message Foo {
- // optional string text = 1;
- // repeated int32 numbers = 2;
- // }
- //
- // Then, if you used the protocol compiler to generate a class from the above
- // definition, you could use it like so:
- //
- // std::string data; // Will store a serialized version of the message.
- //
- // {
- // // Create a message and serialize it.
- // Foo foo;
- // foo.set_text("Hello World!");
- // foo.add_numbers(1);
- // foo.add_numbers(5);
- // foo.add_numbers(42);
- //
- // foo.SerializeToString(&data);
- // }
- //
- // {
- // // Parse the serialized message and check that it contains the
- // // correct data.
- // Foo foo;
- // foo.ParseFromString(data);
- //
- // assert(foo.text() == "Hello World!");
- // assert(foo.numbers_size() == 3);
- // assert(foo.numbers(0) == 1);
- // assert(foo.numbers(1) == 5);
- // assert(foo.numbers(2) == 42);
- // }
- //
- // {
- // // Same as the last block, but do it dynamically via the Message
- // // reflection interface.
- // Message* foo = new Foo;
- // const Descriptor* descriptor = foo->GetDescriptor();
- //
- // // Get the descriptors for the fields we're interested in and verify
- // // their types.
- // const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
- // assert(text_field != nullptr);
- // assert(text_field->type() == FieldDescriptor::TYPE_STRING);
- // assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
- // const FieldDescriptor* numbers_field = descriptor->
- // FindFieldByName("numbers");
- // assert(numbers_field != nullptr);
- // assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
- // assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
- //
- // // Parse the message.
- // foo->ParseFromString(data);
- //
- // // Use the reflection interface to examine the contents.
- // const Reflection* reflection = foo->GetReflection();
- // assert(reflection->GetString(*foo, text_field) == "Hello World!");
- // assert(reflection->FieldSize(*foo, numbers_field) == 3);
- // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
- // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
- // assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
- //
- // delete foo;
- // }
-
- #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
- #define GOOGLE_PROTOBUF_MESSAGE_H__
-
- #include <iosfwd>
- #include <string>
- #include <type_traits>
- #include <vector>
-
- #include <google/protobuf/stubs/casts.h>
- #include <google/protobuf/stubs/common.h>
- #include <google/protobuf/arena.h>
- #include <google/protobuf/descriptor.h>
- #include <google/protobuf/generated_message_reflection.h>
- #include <google/protobuf/message_lite.h>
- #include <google/protobuf/port.h>
-
-
- #define GOOGLE_PROTOBUF_HAS_ONEOF
- #define GOOGLE_PROTOBUF_HAS_ARENAS
-
- #include <google/protobuf/port_def.inc>
-
- #ifdef SWIG
- #error "You cannot SWIG proto headers"
- #endif
-
- namespace google {
- namespace protobuf {
-
- // Defined in this file.
- class Message;
- class Reflection;
- class MessageFactory;
-
- // Defined in other files.
- class AssignDescriptorsHelper;
- class DynamicMessageFactory;
- class MapKey;
- class MapValueRef;
- class MapIterator;
- class MapReflectionTester;
-
- namespace internal {
- struct DescriptorTable;
- class MapFieldBase;
- }
- class UnknownFieldSet; // unknown_field_set.h
- namespace io {
- class ZeroCopyInputStream; // zero_copy_stream.h
- class ZeroCopyOutputStream; // zero_copy_stream.h
- class CodedInputStream; // coded_stream.h
- class CodedOutputStream; // coded_stream.h
- } // namespace io
- namespace python {
- class MapReflectionFriend; // scalar_map_container.h
- }
- namespace expr {
- class CelMapReflectionFriend; // field_backed_map_impl.cc
- }
-
- namespace internal {
- class MapFieldPrinterHelper; // text_format.cc
- }
-
-
- namespace internal {
- class ReflectionAccessor; // message.cc
- class ReflectionOps; // reflection_ops.h
- class MapKeySorter; // wire_format.cc
- class WireFormat; // wire_format.h
- class MapFieldReflectionTest; // map_test.cc
- } // namespace internal
-
- template <typename T>
- class RepeatedField; // repeated_field.h
-
- template <typename T>
- class RepeatedPtrField; // repeated_field.h
-
- // A container to hold message metadata.
- struct Metadata {
- const Descriptor* descriptor;
- const Reflection* reflection;
- };
-
- // Abstract interface for protocol messages.
- //
- // See also MessageLite, which contains most every-day operations. Message
- // adds descriptors and reflection on top of that.
- //
- // The methods of this class that are virtual but not pure-virtual have
- // default implementations based on reflection. Message classes which are
- // optimized for speed will want to override these with faster implementations,
- // but classes optimized for code size may be happy with keeping them. See
- // the optimize_for option in descriptor.proto.
- class PROTOBUF_EXPORT Message : public MessageLite {
- public:
- inline Message() {}
- ~Message() override {}
-
- // Basic Operations ------------------------------------------------
-
- // Construct a new instance of the same type. Ownership is passed to the
- // caller. (This is also defined in MessageLite, but is defined again here
- // for return-type covariance.)
- Message* New() const override = 0;
-
- // Construct a new instance on the arena. Ownership is passed to the caller
- // if arena is a nullptr. Default implementation allows for API compatibility
- // during the Arena transition.
- Message* New(Arena* arena) const override {
- Message* message = New();
- if (arena != nullptr) {
- arena->Own(message);
- }
- return message;
- }
-
- // Make this message into a copy of the given message. The given message
- // must have the same descriptor, but need not necessarily be the same class.
- // By default this is just implemented as "Clear(); MergeFrom(from);".
- virtual void CopyFrom(const Message& from);
-
- // Merge the fields from the given message into this message. Singular
- // fields will be overwritten, if specified in from, except for embedded
- // messages which will be merged. Repeated fields will be concatenated.
- // The given message must be of the same type as this message (i.e. the
- // exact same class).
- virtual void MergeFrom(const Message& from);
-
- // Verifies that IsInitialized() returns true. GOOGLE_CHECK-fails otherwise, with
- // a nice error message.
- void CheckInitialized() const;
-
- // Slowly build a list of all required fields that are not set.
- // This is much, much slower than IsInitialized() as it is implemented
- // purely via reflection. Generally, you should not call this unless you
- // have already determined that an error exists by calling IsInitialized().
- void FindInitializationErrors(std::vector<std::string>* errors) const;
-
- // Like FindInitializationErrors, but joins all the strings, delimited by
- // commas, and returns them.
- std::string InitializationErrorString() const override;
-
- // Clears all unknown fields from this message and all embedded messages.
- // Normally, if unknown tag numbers are encountered when parsing a message,
- // the tag and value are stored in the message's UnknownFieldSet and
- // then written back out when the message is serialized. This allows servers
- // which simply route messages to other servers to pass through messages
- // that have new field definitions which they don't yet know about. However,
- // this behavior can have security implications. To avoid it, call this
- // method after parsing.
- //
- // See Reflection::GetUnknownFields() for more on unknown fields.
- virtual void DiscardUnknownFields();
-
- // Computes (an estimate of) the total number of bytes currently used for
- // storing the message in memory. The default implementation calls the
- // Reflection object's SpaceUsed() method.
- //
- // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
- // using reflection (rather than the generated code implementation for
- // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
- // fields defined for the proto.
- virtual size_t SpaceUsedLong() const;
-
- PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
- int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
-
- // Debugging & Testing----------------------------------------------
-
- // Generates a human readable form of this message, useful for debugging
- // and other purposes.
- std::string DebugString() const;
- // Like DebugString(), but with less whitespace.
- std::string ShortDebugString() const;
- // Like DebugString(), but do not escape UTF-8 byte sequences.
- std::string Utf8DebugString() const;
- // Convenience function useful in GDB. Prints DebugString() to stdout.
- void PrintDebugString() const;
-
- // Reflection-based methods ----------------------------------------
- // These methods are pure-virtual in MessageLite, but Message provides
- // reflection-based default implementations.
-
- std::string GetTypeName() const override;
- void Clear() override;
-
- // Returns whether all required fields have been set. Note that required
- // fields no longer exist starting in proto3.
- bool IsInitialized() const override;
-
- void CheckTypeAndMergeFrom(const MessageLite& other) override;
- // Reflective parser
- const char* _InternalParse(const char* ptr,
- internal::ParseContext* ctx) override;
- size_t ByteSizeLong() const override;
- uint8* InternalSerializeWithCachedSizesToArray(
- uint8* target, io::EpsCopyOutputStream* stream) const override;
-
- private:
- // This is called only by the default implementation of ByteSize(), to
- // update the cached size. If you override ByteSize(), you do not need
- // to override this. If you do not override ByteSize(), you MUST override
- // this; the default implementation will crash.
- //
- // The method is private because subclasses should never call it; only
- // override it. Yes, C++ lets you do that. Crazy, huh?
- virtual void SetCachedSize(int size) const;
-
- public:
- // Introspection ---------------------------------------------------
-
-
- // Get a non-owning pointer to a Descriptor for this message's type. This
- // describes what fields the message contains, the types of those fields, etc.
- // This object remains property of the Message.
- const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
-
- // Get a non-owning pointer to the Reflection interface for this Message,
- // which can be used to read and modify the fields of the Message dynamically
- // (in other words, without knowing the message type at compile time). This
- // object remains property of the Message.
- const Reflection* GetReflection() const { return GetMetadata().reflection; }
-
- protected:
- // Get a struct containing the metadata for the Message, which is used in turn
- // to implement GetDescriptor() and GetReflection() above.
- virtual Metadata GetMetadata() const = 0;
-
-
- private:
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
- };
-
- namespace internal {
- // Forward-declare interfaces used to implement RepeatedFieldRef.
- // These are protobuf internals that users shouldn't care about.
- class RepeatedFieldAccessor;
- } // namespace internal
-
- // Forward-declare RepeatedFieldRef templates. The second type parameter is
- // used for SFINAE tricks. Users should ignore it.
- template <typename T, typename Enable = void>
- class RepeatedFieldRef;
-
- template <typename T, typename Enable = void>
- class MutableRepeatedFieldRef;
-
- // This interface contains methods that can be used to dynamically access
- // and modify the fields of a protocol message. Their semantics are
- // similar to the accessors the protocol compiler generates.
- //
- // To get the Reflection for a given Message, call Message::GetReflection().
- //
- // This interface is separate from Message only for efficiency reasons;
- // the vast majority of implementations of Message will share the same
- // implementation of Reflection (GeneratedMessageReflection,
- // defined in generated_message.h), and all Messages of a particular class
- // should share the same Reflection object (though you should not rely on
- // the latter fact).
- //
- // There are several ways that these methods can be used incorrectly. For
- // example, any of the following conditions will lead to undefined
- // results (probably assertion failures):
- // - The FieldDescriptor is not a field of this message type.
- // - The method called is not appropriate for the field's type. For
- // each field type in FieldDescriptor::TYPE_*, there is only one
- // Get*() method, one Set*() method, and one Add*() method that is
- // valid for that type. It should be obvious which (except maybe
- // for TYPE_BYTES, which are represented using strings in C++).
- // - A Get*() or Set*() method for singular fields is called on a repeated
- // field.
- // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
- // field.
- // - The Message object passed to any method is not of the right type for
- // this Reflection object (i.e. message.GetReflection() != reflection).
- //
- // You might wonder why there is not any abstract representation for a field
- // of arbitrary type. E.g., why isn't there just a "GetField()" method that
- // returns "const Field&", where "Field" is some class with accessors like
- // "GetInt32Value()". The problem is that someone would have to deal with
- // allocating these Field objects. For generated message classes, having to
- // allocate space for an additional object to wrap every field would at least
- // double the message's memory footprint, probably worse. Allocating the
- // objects on-demand, on the other hand, would be expensive and prone to
- // memory leaks. So, instead we ended up with this flat interface.
- class PROTOBUF_EXPORT Reflection final {
- public:
- // Get the UnknownFieldSet for the message. This contains fields which
- // were seen when the Message was parsed but were not recognized according
- // to the Message's definition.
- const UnknownFieldSet& GetUnknownFields(const Message& message) const;
- // Get a mutable pointer to the UnknownFieldSet for the message. This
- // contains fields which were seen when the Message was parsed but were not
- // recognized according to the Message's definition.
- UnknownFieldSet* MutableUnknownFields(Message* message) const;
-
- // Estimate the amount of memory used by the message object.
- size_t SpaceUsedLong(const Message& message) const;
-
- PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
- int SpaceUsed(const Message& message) const {
- return internal::ToIntSize(SpaceUsedLong(message));
- }
-
- // Check if the given non-repeated field is set.
- bool HasField(const Message& message, const FieldDescriptor* field) const;
-
- // Get the number of elements of a repeated field.
- int FieldSize(const Message& message, const FieldDescriptor* field) const;
-
- // Clear the value of a field, so that HasField() returns false or
- // FieldSize() returns zero.
- void ClearField(Message* message, const FieldDescriptor* field) const;
-
- // Check if the oneof is set. Returns true if any field in oneof
- // is set, false otherwise.
- bool HasOneof(const Message& message,
- const OneofDescriptor* oneof_descriptor) const;
-
- void ClearOneof(Message* message,
- const OneofDescriptor* oneof_descriptor) const;
-
- // Returns the field descriptor if the oneof is set. nullptr otherwise.
- const FieldDescriptor* GetOneofFieldDescriptor(
- const Message& message, const OneofDescriptor* oneof_descriptor) const;
-
- // Removes the last element of a repeated field.
- // We don't provide a way to remove any element other than the last
- // because it invites inefficient use, such as O(n^2) filtering loops
- // that should have been O(n). If you want to remove an element other
- // than the last, the best way to do it is to re-arrange the elements
- // (using Swap()) so that the one you want removed is at the end, then
- // call RemoveLast().
- void RemoveLast(Message* message, const FieldDescriptor* field) const;
- // Removes the last element of a repeated message field, and returns the
- // pointer to the caller. Caller takes ownership of the returned pointer.
- Message* ReleaseLast(Message* message, const FieldDescriptor* field) const;
-
- // Swap the complete contents of two messages.
- void Swap(Message* message1, Message* message2) const;
-
- // Swap fields listed in fields vector of two messages.
- void SwapFields(Message* message1, Message* message2,
- const std::vector<const FieldDescriptor*>& fields) const;
-
- // Swap two elements of a repeated field.
- void SwapElements(Message* message, const FieldDescriptor* field, int index1,
- int index2) const;
-
- // List all fields of the message which are currently set, except for unknown
- // fields, but including extension known to the parser (i.e. compiled in).
- // Singular fields will only be listed if HasField(field) would return true
- // and repeated fields will only be listed if FieldSize(field) would return
- // non-zero. Fields (both normal fields and extension fields) will be listed
- // ordered by field number.
- // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
- // access to fields/extensions unknown to the parser.
- void ListFields(const Message& message,
- std::vector<const FieldDescriptor*>* output) const;
-
- // Singular field getters ------------------------------------------
- // These get the value of a non-repeated field. They return the default
- // value for fields that aren't set.
-
- int32 GetInt32(const Message& message, const FieldDescriptor* field) const;
- int64 GetInt64(const Message& message, const FieldDescriptor* field) const;
- uint32 GetUInt32(const Message& message, const FieldDescriptor* field) const;
- uint64 GetUInt64(const Message& message, const FieldDescriptor* field) const;
- float GetFloat(const Message& message, const FieldDescriptor* field) const;
- double GetDouble(const Message& message, const FieldDescriptor* field) const;
- bool GetBool(const Message& message, const FieldDescriptor* field) const;
- std::string GetString(const Message& message,
- const FieldDescriptor* field) const;
- const EnumValueDescriptor* GetEnum(const Message& message,
- const FieldDescriptor* field) const;
-
- // GetEnumValue() returns an enum field's value as an integer rather than
- // an EnumValueDescriptor*. If the integer value does not correspond to a
- // known value descriptor, a new value descriptor is created. (Such a value
- // will only be present when the new unknown-enum-value semantics are enabled
- // for a message.)
- int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
-
- // See MutableMessage() for the meaning of the "factory" parameter.
- const Message& GetMessage(const Message& message,
- const FieldDescriptor* field,
- MessageFactory* factory = nullptr) const;
-
- // Get a string value without copying, if possible.
- //
- // GetString() necessarily returns a copy of the string. This can be
- // inefficient when the std::string is already stored in a std::string object
- // in the underlying message. GetStringReference() will return a reference to
- // the underlying std::string in this case. Otherwise, it will copy the
- // string into *scratch and return that.
- //
- // Note: It is perfectly reasonable and useful to write code like:
- // str = reflection->GetStringReference(message, field, &str);
- // This line would ensure that only one copy of the string is made
- // regardless of the field's underlying representation. When initializing
- // a newly-constructed string, though, it's just as fast and more
- // readable to use code like:
- // std::string str = reflection->GetString(message, field);
- const std::string& GetStringReference(const Message& message,
- const FieldDescriptor* field,
- std::string* scratch) const;
-
-
- // Singular field mutators -----------------------------------------
- // These mutate the value of a non-repeated field.
-
- void SetInt32(Message* message, const FieldDescriptor* field,
- int32 value) const;
- void SetInt64(Message* message, const FieldDescriptor* field,
- int64 value) const;
- void SetUInt32(Message* message, const FieldDescriptor* field,
- uint32 value) const;
- void SetUInt64(Message* message, const FieldDescriptor* field,
- uint64 value) const;
- void SetFloat(Message* message, const FieldDescriptor* field,
- float value) const;
- void SetDouble(Message* message, const FieldDescriptor* field,
- double value) const;
- void SetBool(Message* message, const FieldDescriptor* field,
- bool value) const;
- void SetString(Message* message, const FieldDescriptor* field,
- std::string value) const;
- void SetEnum(Message* message, const FieldDescriptor* field,
- const EnumValueDescriptor* value) const;
- // Set an enum field's value with an integer rather than EnumValueDescriptor.
- // For proto3 this is just setting the enum field to the value specified, for
- // proto2 it's more complicated. If value is a known enum value the field is
- // set as usual. If the value is unknown then it is added to the unknown field
- // set. Note this matches the behavior of parsing unknown enum values.
- // If multiple calls with unknown values happen than they are all added to the
- // unknown field set in order of the calls.
- void SetEnumValue(Message* message, const FieldDescriptor* field,
- int value) const;
-
- // Get a mutable pointer to a field with a message type. If a MessageFactory
- // is provided, it will be used to construct instances of the sub-message;
- // otherwise, the default factory is used. If the field is an extension that
- // does not live in the same pool as the containing message's descriptor (e.g.
- // it lives in an overlay pool), then a MessageFactory must be provided.
- // If you have no idea what that meant, then you probably don't need to worry
- // about it (don't provide a MessageFactory). WARNING: If the
- // FieldDescriptor is for a compiled-in extension, then
- // factory->GetPrototype(field->message_type()) MUST return an instance of
- // the compiled-in class for this type, NOT DynamicMessage.
- Message* MutableMessage(Message* message, const FieldDescriptor* field,
- MessageFactory* factory = nullptr) const;
- // Replaces the message specified by 'field' with the already-allocated object
- // sub_message, passing ownership to the message. If the field contained a
- // message, that message is deleted. If sub_message is nullptr, the field is
- // cleared.
- void SetAllocatedMessage(Message* message, Message* sub_message,
- const FieldDescriptor* field) const;
- // Releases the message specified by 'field' and returns the pointer,
- // ReleaseMessage() will return the message the message object if it exists.
- // Otherwise, it may or may not return nullptr. In any case, if the return
- // value is non-null, the caller takes ownership of the pointer.
- // If the field existed (HasField() is true), then the returned pointer will
- // be the same as the pointer returned by MutableMessage().
- // This function has the same effect as ClearField().
- Message* ReleaseMessage(Message* message, const FieldDescriptor* field,
- MessageFactory* factory = nullptr) const;
-
-
- // Repeated field getters ------------------------------------------
- // These get the value of one element of a repeated field.
-
- int32 GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
- int index) const;
- int64 GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
- int index) const;
- uint32 GetRepeatedUInt32(const Message& message, const FieldDescriptor* field,
- int index) const;
- uint64 GetRepeatedUInt64(const Message& message, const FieldDescriptor* field,
- int index) const;
- float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
- int index) const;
- double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
- int index) const;
- bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
- int index) const;
- std::string GetRepeatedString(const Message& message,
- const FieldDescriptor* field, int index) const;
- const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
- const FieldDescriptor* field,
- int index) const;
- // GetRepeatedEnumValue() returns an enum field's value as an integer rather
- // than an EnumValueDescriptor*. If the integer value does not correspond to a
- // known value descriptor, a new value descriptor is created. (Such a value
- // will only be present when the new unknown-enum-value semantics are enabled
- // for a message.)
- int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
- int index) const;
- const Message& GetRepeatedMessage(const Message& message,
- const FieldDescriptor* field,
- int index) const;
-
- // See GetStringReference(), above.
- const std::string& GetRepeatedStringReference(const Message& message,
- const FieldDescriptor* field,
- int index,
- std::string* scratch) const;
-
-
- // Repeated field mutators -----------------------------------------
- // These mutate the value of one element of a repeated field.
-
- void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
- int index, int32 value) const;
- void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
- int index, int64 value) const;
- void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
- int index, uint32 value) const;
- void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
- int index, uint64 value) const;
- void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
- int index, float value) const;
- void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
- int index, double value) const;
- void SetRepeatedBool(Message* message, const FieldDescriptor* field,
- int index, bool value) const;
- void SetRepeatedString(Message* message, const FieldDescriptor* field,
- int index, std::string value) const;
- void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
- int index, const EnumValueDescriptor* value) const;
- // Set an enum field's value with an integer rather than EnumValueDescriptor.
- // For proto3 this is just setting the enum field to the value specified, for
- // proto2 it's more complicated. If value is a known enum value the field is
- // set as usual. If the value is unknown then it is added to the unknown field
- // set. Note this matches the behavior of parsing unknown enum values.
- // If multiple calls with unknown values happen than they are all added to the
- // unknown field set in order of the calls.
- void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
- int index, int value) const;
- // Get a mutable pointer to an element of a repeated field with a message
- // type.
- Message* MutableRepeatedMessage(Message* message,
- const FieldDescriptor* field,
- int index) const;
-
-
- // Repeated field adders -------------------------------------------
- // These add an element to a repeated field.
-
- void AddInt32(Message* message, const FieldDescriptor* field,
- int32 value) const;
- void AddInt64(Message* message, const FieldDescriptor* field,
- int64 value) const;
- void AddUInt32(Message* message, const FieldDescriptor* field,
- uint32 value) const;
- void AddUInt64(Message* message, const FieldDescriptor* field,
- uint64 value) const;
- void AddFloat(Message* message, const FieldDescriptor* field,
- float value) const;
- void AddDouble(Message* message, const FieldDescriptor* field,
- double value) const;
- void AddBool(Message* message, const FieldDescriptor* field,
- bool value) const;
- void AddString(Message* message, const FieldDescriptor* field,
- std::string value) const;
- void AddEnum(Message* message, const FieldDescriptor* field,
- const EnumValueDescriptor* value) const;
- // Add an integer value to a repeated enum field rather than
- // EnumValueDescriptor. For proto3 this is just setting the enum field to the
- // value specified, for proto2 it's more complicated. If value is a known enum
- // value the field is set as usual. If the value is unknown then it is added
- // to the unknown field set. Note this matches the behavior of parsing unknown
- // enum values. If multiple calls with unknown values happen than they are all
- // added to the unknown field set in order of the calls.
- void AddEnumValue(Message* message, const FieldDescriptor* field,
- int value) const;
- // See MutableMessage() for comments on the "factory" parameter.
- Message* AddMessage(Message* message, const FieldDescriptor* field,
- MessageFactory* factory = nullptr) const;
-
- // Appends an already-allocated object 'new_entry' to the repeated field
- // specified by 'field' passing ownership to the message.
- void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
- Message* new_entry) const;
-
-
- // Get a RepeatedFieldRef object that can be used to read the underlying
- // repeated field. The type parameter T must be set according to the
- // field's cpp type. The following table shows the mapping from cpp type
- // to acceptable T.
- //
- // field->cpp_type() T
- // CPPTYPE_INT32 int32
- // CPPTYPE_UINT32 uint32
- // CPPTYPE_INT64 int64
- // CPPTYPE_UINT64 uint64
- // CPPTYPE_DOUBLE double
- // CPPTYPE_FLOAT float
- // CPPTYPE_BOOL bool
- // CPPTYPE_ENUM generated enum type or int32
- // CPPTYPE_STRING std::string
- // CPPTYPE_MESSAGE generated message type or google::protobuf::Message
- //
- // A RepeatedFieldRef object can be copied and the resulted object will point
- // to the same repeated field in the same message. The object can be used as
- // long as the message is not destroyed.
- //
- // Note that to use this method users need to include the header file
- // "net/proto2/public/reflection.h" (which defines the RepeatedFieldRef
- // class templates).
- template <typename T>
- RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
- const FieldDescriptor* field) const;
-
- // Like GetRepeatedFieldRef() but return an object that can also be used
- // manipulate the underlying repeated field.
- template <typename T>
- MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
- Message* message, const FieldDescriptor* field) const;
-
- // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
- // access. The following repeated field accesors will be removed in the
- // future.
- //
- // Repeated field accessors -------------------------------------------------
- // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
- // access to the data in a RepeatedField. The methods below provide aggregate
- // access by exposing the RepeatedField object itself with the Message.
- // Applying these templates to inappropriate types will lead to an undefined
- // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
- // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
- //
- // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
-
- // DEPRECATED. Please use GetRepeatedFieldRef().
- //
- // for T = Cord and all protobuf scalar types except enums.
- template <typename T>
- PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
- const RepeatedField<T>& GetRepeatedField(const Message&,
- const FieldDescriptor*) const;
-
- // DEPRECATED. Please use GetMutableRepeatedFieldRef().
- //
- // for T = Cord and all protobuf scalar types except enums.
- template <typename T>
- PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
- RepeatedField<T>* MutableRepeatedField(Message*,
- const FieldDescriptor*) const;
-
- // DEPRECATED. Please use GetRepeatedFieldRef().
- //
- // for T = std::string, google::protobuf::internal::StringPieceField
- // google::protobuf::Message & descendants.
- template <typename T>
- PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
- const RepeatedPtrField<T>& GetRepeatedPtrField(const Message&,
- const FieldDescriptor*) const;
-
- // DEPRECATED. Please use GetMutableRepeatedFieldRef().
- //
- // for T = std::string, google::protobuf::internal::StringPieceField
- // google::protobuf::Message & descendants.
- template <typename T>
- PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
- RepeatedPtrField<T>* MutableRepeatedPtrField(Message*,
- const FieldDescriptor*) const;
-
- // Extensions ----------------------------------------------------------------
-
- // Try to find an extension of this message type by fully-qualified field
- // name. Returns nullptr if no extension is known for this name or number.
- PROTOBUF_DEPRECATED_MSG(
- "Please use DescriptorPool::FindExtensionByPrintableName instead")
- const FieldDescriptor* FindKnownExtensionByName(
- const std::string& name) const;
-
- // Try to find an extension of this message type by field number.
- // Returns nullptr if no extension is known for this name or number.
- PROTOBUF_DEPRECATED_MSG(
- "Please use DescriptorPool::FindExtensionByNumber instead")
- const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
-
- // Feature Flags -------------------------------------------------------------
-
- // Does this message support storing arbitrary integer values in enum fields?
- // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
- // take arbitrary integer values, and the legacy GetEnum() getter will
- // dynamically create an EnumValueDescriptor for any integer value without
- // one. If |false|, setting an unknown enum value via the integer-based
- // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
- //
- // Generic code that uses reflection to handle messages with enum fields
- // should check this flag before using the integer-based setter, and either
- // downgrade to a compatible value or use the UnknownFieldSet if not. For
- // example:
- //
- // int new_value = GetValueFromApplicationLogic();
- // if (reflection->SupportsUnknownEnumValues()) {
- // reflection->SetEnumValue(message, field, new_value);
- // } else {
- // if (field_descriptor->enum_type()->
- // FindValueByNumber(new_value) != nullptr) {
- // reflection->SetEnumValue(message, field, new_value);
- // } else if (emit_unknown_enum_values) {
- // reflection->MutableUnknownFields(message)->AddVarint(
- // field->number(), new_value);
- // } else {
- // // convert value to a compatible/default value.
- // new_value = CompatibleDowngrade(new_value);
- // reflection->SetEnumValue(message, field, new_value);
- // }
- // }
- bool SupportsUnknownEnumValues() const;
-
- // Returns the MessageFactory associated with this message. This can be
- // useful for determining if a message is a generated message or not, for
- // example:
- // if (message->GetReflection()->GetMessageFactory() ==
- // google::protobuf::MessageFactory::generated_factory()) {
- // // This is a generated message.
- // }
- // It can also be used to create more messages of this type, though
- // Message::New() is an easier way to accomplish this.
- MessageFactory* GetMessageFactory() const;
-
- private:
- // Obtain a pointer to a Repeated Field Structure and do some type checking:
- // on field->cpp_type(),
- // on field->field_option().ctype() (if ctype >= 0)
- // of field->message_type() (if message_type != nullptr).
- // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
- void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
- FieldDescriptor::CppType, int ctype,
- const Descriptor* message_type) const;
-
- const void* GetRawRepeatedField(const Message& message,
- const FieldDescriptor* field,
- FieldDescriptor::CppType cpptype, int ctype,
- const Descriptor* message_type) const;
-
- // The following methods are used to implement (Mutable)RepeatedFieldRef.
- // A Ref object will store a raw pointer to the repeated field data (obtained
- // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
- // RepeatedFieldAccessor) which will be used to access the raw data.
-
- // Returns a raw pointer to the repeated field
- //
- // "cpp_type" and "message_type" are deduced from the type parameter T passed
- // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
- // "message_type" should be set to its descriptor. Otherwise "message_type"
- // should be set to nullptr. Implementations of this method should check
- // whether "cpp_type"/"message_type" is consistent with the actual type of the
- // field. We use 1 routine rather than 2 (const vs mutable) because it is
- // protected and it doesn't change the message.
- void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
- FieldDescriptor::CppType cpp_type,
- const Descriptor* message_type) const;
-
- // The returned pointer should point to a singleton instance which implements
- // the RepeatedFieldAccessor interface.
- const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
- const FieldDescriptor* field) const;
-
- const Descriptor* const descriptor_;
- const internal::ReflectionSchema schema_;
- const DescriptorPool* const descriptor_pool_;
- MessageFactory* const message_factory_;
-
- // Last non weak field index. This is an optimization when most weak fields
- // are at the end of the containing message. If a message proto doesn't
- // contain weak fields, then this field equals descriptor_->field_count().
- int last_non_weak_field_index_;
-
- template <typename T, typename Enable>
- friend class RepeatedFieldRef;
- template <typename T, typename Enable>
- friend class MutableRepeatedFieldRef;
- friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
- friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
- friend class DynamicMessageFactory;
- friend class python::MapReflectionFriend;
- #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
- friend class expr::CelMapReflectionFriend;
- friend class internal::MapFieldReflectionTest;
- friend class internal::MapKeySorter;
- friend class internal::WireFormat;
- friend class internal::ReflectionOps;
- // Needed for implementing text format for map.
- friend class internal::MapFieldPrinterHelper;
- friend class internal::ReflectionAccessor;
-
- Reflection(const Descriptor* descriptor,
- const internal::ReflectionSchema& schema,
- const DescriptorPool* pool, MessageFactory* factory);
-
- // Special version for specialized implementations of string. We can't
- // call MutableRawRepeatedField directly here because we don't have access to
- // FieldOptions::* which are defined in descriptor.pb.h. Including that
- // file here is not possible because it would cause a circular include cycle.
- // We use 1 routine rather than 2 (const vs mutable) because it is private
- // and mutable a repeated string field doesn't change the message.
- void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
- bool is_string) const;
-
- friend class MapReflectionTester;
- // Returns true if key is in map. Returns false if key is not in map field.
- bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
- const MapKey& key) const;
-
- // If key is in map field: Saves the value pointer to val and returns
- // false. If key in not in map field: Insert the key into map, saves
- // value pointer to val and retuns true.
- bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
- const MapKey& key, MapValueRef* val) const;
-
- // Delete and returns true if key is in the map field. Returns false
- // otherwise.
- bool DeleteMapValue(Message* message, const FieldDescriptor* field,
- const MapKey& key) const;
-
- // Returns a MapIterator referring to the first element in the map field.
- // If the map field is empty, this function returns the same as
- // reflection::MapEnd. Mutation to the field may invalidate the iterator.
- MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
-
- // Returns a MapIterator referring to the theoretical element that would
- // follow the last element in the map field. It does not point to any
- // real element. Mutation to the field may invalidate the iterator.
- MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
-
- // Get the number of <key, value> pair of a map field. The result may be
- // different from FieldSize which can have duplicate keys.
- int MapSize(const Message& message, const FieldDescriptor* field) const;
-
- // Help method for MapIterator.
- friend class MapIterator;
- internal::MapFieldBase* MutableMapData(Message* message,
- const FieldDescriptor* field) const;
-
- const internal::MapFieldBase* GetMapData(const Message& message,
- const FieldDescriptor* field) const;
-
- template <class T>
- const T& GetRawNonOneof(const Message& message,
- const FieldDescriptor* field) const;
- template <class T>
- T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;
-
- template <typename Type>
- const Type& GetRaw(const Message& message,
- const FieldDescriptor* field) const;
- template <typename Type>
- inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
- template <typename Type>
- inline const Type& DefaultRaw(const FieldDescriptor* field) const;
-
- inline const uint32* GetHasBits(const Message& message) const;
- inline uint32* MutableHasBits(Message* message) const;
- inline uint32 GetOneofCase(const Message& message,
- const OneofDescriptor* oneof_descriptor) const;
- inline uint32* MutableOneofCase(
- Message* message, const OneofDescriptor* oneof_descriptor) const;
- inline const internal::ExtensionSet& GetExtensionSet(
- const Message& message) const;
- inline internal::ExtensionSet* MutableExtensionSet(Message* message) const;
- inline Arena* GetArena(Message* message) const;
-
- inline const internal::InternalMetadataWithArena&
- GetInternalMetadataWithArena(const Message& message) const;
-
- internal::InternalMetadataWithArena* MutableInternalMetadataWithArena(
- Message* message) const;
-
- inline bool IsInlined(const FieldDescriptor* field) const;
-
- inline bool HasBit(const Message& message,
- const FieldDescriptor* field) const;
- inline void SetBit(Message* message, const FieldDescriptor* field) const;
- inline void ClearBit(Message* message, const FieldDescriptor* field) const;
- inline void SwapBit(Message* message1, Message* message2,
- const FieldDescriptor* field) const;
-
- // This function only swaps the field. Should swap corresponding has_bit
- // before or after using this function.
- void SwapField(Message* message1, Message* message2,
- const FieldDescriptor* field) const;
-
- void SwapOneofField(Message* message1, Message* message2,
- const OneofDescriptor* oneof_descriptor) const;
-
- inline bool HasOneofField(const Message& message,
- const FieldDescriptor* field) const;
- inline void SetOneofCase(Message* message,
- const FieldDescriptor* field) const;
- inline void ClearOneofField(Message* message,
- const FieldDescriptor* field) const;
-
- template <typename Type>
- inline const Type& GetField(const Message& message,
- const FieldDescriptor* field) const;
- template <typename Type>
- inline void SetField(Message* message, const FieldDescriptor* field,
- const Type& value) const;
- template <typename Type>
- inline Type* MutableField(Message* message,
- const FieldDescriptor* field) const;
- template <typename Type>
- inline const Type& GetRepeatedField(const Message& message,
- const FieldDescriptor* field,
- int index) const;
- template <typename Type>
- inline const Type& GetRepeatedPtrField(const Message& message,
- const FieldDescriptor* field,
- int index) const;
- template <typename Type>
- inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
- int index, Type value) const;
- template <typename Type>
- inline Type* MutableRepeatedField(Message* message,
- const FieldDescriptor* field,
- int index) const;
- template <typename Type>
- inline void AddField(Message* message, const FieldDescriptor* field,
- const Type& value) const;
- template <typename Type>
- inline Type* AddField(Message* message, const FieldDescriptor* field) const;
-
- int GetExtensionNumberOrDie(const Descriptor* type) const;
-
- // Internal versions of EnumValue API perform no checking. Called after checks
- // by public methods.
- void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
- int value) const;
- void SetRepeatedEnumValueInternal(Message* message,
- const FieldDescriptor* field, int index,
- int value) const;
- void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
- int value) const;
-
- Message* UnsafeArenaReleaseMessage(Message* message,
- const FieldDescriptor* field,
- MessageFactory* factory = nullptr) const;
-
- void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
- const FieldDescriptor* field) const;
-
- friend inline // inline so nobody can call this function.
- void
- RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
-
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
- };
-
- // Abstract interface for a factory for message objects.
- class PROTOBUF_EXPORT MessageFactory {
- public:
- inline MessageFactory() {}
- virtual ~MessageFactory();
-
- // Given a Descriptor, gets or constructs the default (prototype) Message
- // of that type. You can then call that message's New() method to construct
- // a mutable message of that type.
- //
- // Calling this method twice with the same Descriptor returns the same
- // object. The returned object remains property of the factory. Also, any
- // objects created by calling the prototype's New() method share some data
- // with the prototype, so these must be destroyed before the MessageFactory
- // is destroyed.
- //
- // The given descriptor must outlive the returned message, and hence must
- // outlive the MessageFactory.
- //
- // Some implementations do not support all types. GetPrototype() will
- // return nullptr if the descriptor passed in is not supported.
- //
- // This method may or may not be thread-safe depending on the implementation.
- // Each implementation should document its own degree thread-safety.
- virtual const Message* GetPrototype(const Descriptor* type) = 0;
-
- // Gets a MessageFactory which supports all generated, compiled-in messages.
- // In other words, for any compiled-in type FooMessage, the following is true:
- // MessageFactory::generated_factory()->GetPrototype(
- // FooMessage::descriptor()) == FooMessage::default_instance()
- // This factory supports all types which are found in
- // DescriptorPool::generated_pool(). If given a descriptor from any other
- // pool, GetPrototype() will return nullptr. (You can also check if a
- // descriptor is for a generated message by checking if
- // descriptor->file()->pool() == DescriptorPool::generated_pool().)
- //
- // This factory is 100% thread-safe; calling GetPrototype() does not modify
- // any shared data.
- //
- // This factory is a singleton. The caller must not delete the object.
- static MessageFactory* generated_factory();
-
- // For internal use only: Registers a .proto file at static initialization
- // time, to be placed in generated_factory. The first time GetPrototype()
- // is called with a descriptor from this file, |register_messages| will be
- // called, with the file name as the parameter. It must call
- // InternalRegisterGeneratedMessage() (below) to register each message type
- // in the file. This strange mechanism is necessary because descriptors are
- // built lazily, so we can't register types by their descriptor until we
- // know that the descriptor exists. |filename| must be a permanent string.
- static void InternalRegisterGeneratedFile(
- const google::protobuf::internal::DescriptorTable* table);
-
- // For internal use only: Registers a message type. Called only by the
- // functions which are registered with InternalRegisterGeneratedFile(),
- // above.
- static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
- const Message* prototype);
-
-
- private:
- GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
- };
-
- #define DECLARE_GET_REPEATED_FIELD(TYPE) \
- template <> \
- PROTOBUF_EXPORT const RepeatedField<TYPE>& \
- Reflection::GetRepeatedField<TYPE>(const Message& message, \
- const FieldDescriptor* field) const; \
- \
- template <> \
- PROTOBUF_EXPORT RepeatedField<TYPE>* Reflection::MutableRepeatedField<TYPE>( \
- Message * message, const FieldDescriptor* field) const;
-
- DECLARE_GET_REPEATED_FIELD(int32)
- DECLARE_GET_REPEATED_FIELD(int64)
- DECLARE_GET_REPEATED_FIELD(uint32)
- DECLARE_GET_REPEATED_FIELD(uint64)
- DECLARE_GET_REPEATED_FIELD(float)
- DECLARE_GET_REPEATED_FIELD(double)
- DECLARE_GET_REPEATED_FIELD(bool)
-
- #undef DECLARE_GET_REPEATED_FIELD
-
- // Tries to downcast this message to a generated message type. Returns nullptr
- // if this class is not an instance of T. This works even if RTTI is disabled.
- //
- // This also has the effect of creating a strong reference to T that will
- // prevent the linker from stripping it out at link time. This can be important
- // if you are using a DynamicMessageFactory that delegates to the generated
- // factory.
- template <typename T>
- const T* DynamicCastToGenerated(const Message* from) {
- // Compile-time assert that T is a generated type that has a
- // default_instance() accessor, but avoid actually calling it.
- const T& (*get_default_instance)() = &T::default_instance;
- (void)get_default_instance;
-
- // Compile-time assert that T is a subclass of google::protobuf::Message.
- const Message* unused = static_cast<T*>(nullptr);
- (void)unused;
-
- #ifdef GOOGLE_PROTOBUF_NO_RTTI
- bool ok = T::default_instance().GetReflection() == from->GetReflection();
- return ok ? down_cast<const T*>(from) : nullptr;
- #else
- return dynamic_cast<const T*>(from);
- #endif
- }
-
- template <typename T>
- T* DynamicCastToGenerated(Message* from) {
- const Message* message_const = from;
- return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
- }
-
- // Call this function to ensure that this message's reflection is linked into
- // the binary:
- //
- // google::protobuf::LinkMessageReflection<FooMessage>();
- //
- // This will ensure that the following lookup will succeed:
- //
- // DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage");
- //
- // As a side-effect, it will also guarantee that anything else from the same
- // .proto file will also be available for lookup in the generated pool.
- //
- // This function does not actually register the message, so it does not need
- // to be called before the lookup. However it does need to occur in a function
- // that cannot be stripped from the binary (ie. it must be reachable from main).
- //
- // Best practice is to call this function as close as possible to where the
- // reflection is actually needed. This function is very cheap to call, so you
- // should not need to worry about its runtime overhead except in the tightest
- // of loops (on x86-64 it compiles into two "mov" instructions).
- template <typename T>
- void LinkMessageReflection() {
- internal::StrongReference(T::default_instance);
- }
-
- // =============================================================================
- // Implementation details for {Get,Mutable}RawRepeatedPtrField. We provide
- // specializations for <std::string>, <StringPieceField> and <Message> and
- // handle everything else with the default template which will match any type
- // having a method with signature "static const google::protobuf::Descriptor*
- // descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
-
- template <>
- inline const RepeatedPtrField<std::string>&
- Reflection::GetRepeatedPtrField<std::string>(
- const Message& message, const FieldDescriptor* field) const {
- return *static_cast<RepeatedPtrField<std::string>*>(
- MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
- }
-
- template <>
- inline RepeatedPtrField<std::string>*
- Reflection::MutableRepeatedPtrField<std::string>(
- Message* message, const FieldDescriptor* field) const {
- return static_cast<RepeatedPtrField<std::string>*>(
- MutableRawRepeatedString(message, field, true));
- }
-
-
- // -----
-
- template <>
- inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrField(
- const Message& message, const FieldDescriptor* field) const {
- return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
- message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
- }
-
- template <>
- inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrField(
- Message* message, const FieldDescriptor* field) const {
- return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
- message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
- }
-
- template <typename PB>
- inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrField(
- const Message& message, const FieldDescriptor* field) const {
- return *static_cast<const RepeatedPtrField<PB>*>(
- GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
- PB::default_instance().GetDescriptor()));
- }
-
- template <typename PB>
- inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrField(
- Message* message, const FieldDescriptor* field) const {
- return static_cast<RepeatedPtrField<PB>*>(
- MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
- -1, PB::default_instance().GetDescriptor()));
- }
- } // namespace protobuf
- } // namespace google
-
- #include <google/protobuf/port_undef.inc>
-
- #endif // GOOGLE_PROTOBUF_MESSAGE_H__
|